WU BLAST 2.0 TOPICS

Index

Description
Licensing
Key Features
Manifest

To Fly... (last updated 2003-10-13)
Comparable WU/NCBI BLAST Parameters

Examples

Command Line Options
Environment Variables

Filters and Masks

Bugs

Memory Requirements

Supported Platforms

Precompiled Executables (Old and Obsolete but Free)
Installation

Citing WU-BLAST

Historical Notes

References

Description

Washington University BLAST (WU BLAST) version 2.0 is a powerful software package for gene
and protein identification, using sensitive, selective and rapid similarity searches of protein and
nucleotide sequence databases. The feature list for WU BLAST 2.0 is long and continues to expand.
Much of this is outlined below. A complete suite of search programs (blastp, blastn, blastx, tblastn
and tblastx) is included in the package, along with database management and support programs that
include nrdb, patdb, xdformat, xdget, seg, dust and xnu.

WU BLAST has been built to be the most trusted database search tool in your software toolbox,
doing what you tell it, doing precisely what it says it's doing, and able to handle even your
biggest jobs with aplomb. WU BLAST was built from the start to offer superior performance and
flexibility. Its unique combination of features, sensitivity, speed and reliability is achieved by using
advanced algorithms, through painstaking software coding, the use of extensive error checks, and
through a superior design that anticipates future needs. To help users keep pace with the latest
technology, with every new release of WU BLAST a high degree of backward compatibility has been
provided.

WU BLAST is neither a re-hashed nor “Mac-ified” version of NCBI BLAST, although WU BLAST is
in many ways easier to use. WU BLAST shares essentially no code with NCBI BLAST, except for
some portions that both packages copied from the public domain ungapped BLAST 1.4 (W. Gish,
unpublished). For more information about the lineage and history of WU BLAST development, please
go here.

Licensing

Information on licensing of WU BLAST 2.0 can be found here.

WU BLAST 2.0 is copyrighted and may not be sold, redistributed or modified in any form or by any
means, without prior express written consent from the Office of Technology Management at
Washington University in St. Louis.

DISCLAIMER: THIS SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND.

Key

Features

Some key features of WU BLAST 2.0 are described below.

Gapped alignment routines are available (and used by default) in all BLAST search modes:
BLASTP, BLASTN, and TBLASTN (Altschul et al.. 1990), as well as, sastx (Gish and States. 1993) and
TBLASTX (W. Gish, 1994, unpublished). Gaps can optionally be turned off in any mode if desired.
Potentially multiple regions of similarity are identified and reported for each database sequence,
thus yielding increased sensitivity and selectivity. This feature is essential for finding: all exons in
a multi-exon gene sequence, not just the longest or best-matching exon; all complete or partial
copies of a repetitive element in a genomic sequence, not just the best matching one; and multiple,
discrete domains of similarity between sequences, not just the highest-scoring one.

Karlin and Altschul (1993) “Sum” statistics are available (and used by default) in all search
modes, to evaluate the joint probability of multiple regions of similarity, as described by Altschul
and Gish (1996). By this technique, sets of similar regions are often found to be statistically
significant that individually would be insignificant and might otherwise go unreported. The
combination of well-chosen heuristics and statistics in WU BLAST is often more
sensitive/selective than: the full dynamic programming approach of Smith and Waterman (1981),
that finds and evaluates the significance of only the highest scoring alignment with each database
sequence; and other approaches or BLAST implementations that identify multiple regions of local
similarity which are then evaluated individually for statistical significance.

Poisson statistics are available as an option to Karlin-Altschul Sum statistics in all search modes.
Simpler Karlin-Altschul (1990) statistics, that do not involve joint probability calculations, are
also available as an option.

Using the postsw option, a full Smith-Waterman alignment is performed on query-subject pairs of
sequences that are to be reported by BLasTe. Smith-Waterman results are combined with the initial
BLAST results and redundancy is removed. This may alter the relative ranking of database
matches before output. Use of this option is recommended, although it may be supplanted in the
future by other option(s) or by a redefined default behavior.

The execution of WU BLAST 2.0 has been optimized such that gapped searches typically run
faster — sometimes many times faster — than the ungapped version 1.4 programs ever did, while
increasing sensitivity. An exception to this observation is BLasty (already quite fast) which
typically runs about 10% slower with its default parameters, due to the addition of gapped
alignment steps.

The classical 1-hit BLAST algorithm has not been changed in WU BLAST 2.0 and remains the
default method for finding ungapped alignments that are then used as “seeds” for finding gapped
alignments. WU BLAST 2.0 thus retains sensitivity and control characteristics to which users
became accustomed with previous versions of BLAST; the addition of gapped alignments in
version 2.0 merely improves sensitivity. When assessed at the same sensitivity level, the
optimized, classical BLAST algorithm implemented in WU BLAST 2.0 exhibited nearly the same
speed as the 2-hit algorithm implemented at the NCBI (Altschul ez al., 1997) and uses
significantly less memory. For users who desire still higher speed, an improved 2-hit algorithm is
available in a higher-performance (more efficient and more sensitive) WU implementation than
that from the NCBI. (See the hitdist option); Users should note that even in the WU version of the
2-hit algorithm, significantly more memory is required to achieve the same level of sensitivity as
the classical 1-hit algorithm, so even though the 2-hit algorithm may be faster when its parameters
are tuned to achieve the same level of sensitivity as the 1-hit algorithm, its increased memory

requirements may be prohibitive). While the classical 1-hit BLAST algorithm remains the default
in all WU BLAST search modes, the 2-hit algorithm is available as an option in all search modes,
as well — including BLASTN.

e Gapped alignments in the blastn search mode are evaluated correctly — as is indeed the case for

all WU BLAST search modes — using different statistical parameter values ()\, K and H) than
those used to evaluate the significance of ungapped alignments. If appropriate parameters are
unavailable for the particular combination of scoring matrix and gap penalties being used, a
prominent WARNING is displayed.

e Unique to WU blastn is support for fully-specified scoring matrices, not just simple
match/mismatch scoring systems. This allows (for example) transitions to be scored differently
than transversions; and permits positive G-A substitution scores for the design of siRNAs where
G-U base pairing is allowed. Scoring matrices may also be tailored to improve the design of PCR
primers. Scoring matrices were first supported in 1994, by the NCBI's ungapped blastn version
1.4 (Gish, W., unpublished; see http://blast.wustl.edu/blast-1.4). Support for nucleotide scoring
matrices was dropped by the NCBI's blastall 2.0 program first released in 1997, but has been
maintained continuously in all WU versions of the software since the migration to Washington
University in 1994.

e Word lengths (re: the W parameter) as short as 1 have been supported continuously by WU
blastn, as are nucleotide neighborhood words, using the neighborhood word score threshold
parameter, 7. Using neighborhood words, nucleotide sequence similarity can be detected even in
the absence of any identical residues between two sequences. Users are cautioned, however, that
careless use of the T parameter can result in vast and overwhelming amounts of memory being
requested by the software; T should likely be used only in conjunction with very short word
lengths.

¢ Information describing “consistent” groups of alignments (HSPs) is provided by BLAST 2.0,
when the topcomboN or links options are used. This facility can help with construction of distinct
gene structure(s) from a barrage of alignments.

e Multiple output formats are available — and can in fact be produced simultaneously from a single
program run — including an informative tabular output and XML output that conforms to the
NCBI DTD.

e The eXtended Database Format (XDF) provides the foundation for easier, more flexible and more
accurate management of protein and nucleotide sequence databases. XDF was developed in part
because the NCBI BLAST 2.0 database format could not accurately represent sequences over 16
Mbp in length, at a time when human genome contigs exceeded 25 Mbp (Hattori ez al.. 2000)
With GenBank release 149 in August 2005, the sequences total over 50 Gbp in length. Since its
inception in 1999, XDF has allowed for accurate storage and indexed retrieval of individual
sequences up to 1 Gbp (billion base-pairs). Other BLAST software limits database files to 2
gigabytes, whereas WU BLAST's XDF supports databases (and database files) of virtually
unlimited size.

In support of the eXtended Database Format, a new database formatting tool named xdformat was
introduced in the WU BLAST 2.0 package in 1999. The distinct features and advantages to using XDF
and the xdformat program include:

¢ fast appends of new sequence data to existing databases — no need to reformat a database just to
add one or more new sequences to it;

¢ xdformat formats databases up to 4 times faster than the NCBI formatdb program, while offering
a superset of features, greater reliability, and more extensive error checking by default;

¢ safe roll-backs of database updates when parse errors or file I/O errors arise (e.g., disk full
errors), leaving your database intact and ready for search and retrieval;

o regardless of the input data size, 3 and only 3 database files are always created by xdformat (or
just 4 files when indexing identifiers), which simplifies the implementation and testing of robust
management Scripts;

¢ in command line shell scripts and PERL system() calls, the names of XDF database files all match

the simple regular expression *.xp? for peptide sequence databases and *.xn? for nucleotide
sequence databases (or *.x[np]? to encompass both peptide and nucleotide databases);

flexible indexing of all sequence identifiers is performed, including user-defined identifiers and
identifiers defined by the NCBI;

identifier indexes support duplicate occurrences of the same identifier — even identical “gi”
identifiers that have been known to cause some indexing programs to abort — with warnings
issued when duplicates do appear;

identifier indexing is supported not only when first creating an XDF database but when
appending new sequences to an existing XDF database;

if a database was originally created without an identifier index, one can be quickly added later
without having to reformat the entire database;

identifier indexes can be quickly re-built if necessary, using different indexing policies, without
having to reformat the entire database;

intelligent retrieval of indexed sequences using a complementary program named xdget; xdget
can retrieve sequences by identifier, even if not told what “name space” the identifer came from
(e.g., g, accession, locus, user-defined, etc.); for more on identifier indexing, see this;

xdformat and xdget both accept and work intelligently with identifiers that obey the International
DDBJ/EBI/NCBI collaboration's Accession.Version identifier syntax (e.g., the programs know
that BAA84643.2 is a newer version of BAA84643, but will retrieve BAA84643.1 if specifically
requested); and the parsing programs that come with WU BLAST for converting GenBank and
EMBL database flat files into "FASTA" format report gi identifiers, as well as Accessions with
Versions;

both the memory required and the search initiation time are reduced for databases containing large
numbers of entries, which is particularly important when memory is in short supply or when
multiple processors are standing by waiting for a single-threaded initialization phase to be
completed;

the ability to dump (or recover) the contents of an XDF database back into FASTA format with
the original annotation and ambiguity codes intact;

both the X and N ambiguity codes are supported in nucleotide sequences, thus permitting the use
of alternative substitution scores for these letters and the use of PHRED/PHRAP sequence output
“as is” as input to xdformat.

Support for XDF by the BLAST search programs did not come at the expense of losing
backward compatibility. WU BLAST can search databases in either XDF or the classical

BLAST 1.4 database formats. For early users of NCBI or WU BLAST 1.4, migration to XDF
was merely a drop-in upgrade of the version 2.0 WU software.

When searching very large databases, virtual memory requirements are dramatically reduced in
WU BLAST 2.0, eliminating program failures that occurred when system resource limits were
unexpectedly reached.

Virtual databases are supported in BLAST 2.0. Virtual databases can be specified on the
command line as a white space-delimited list of component database names. Virtual databases can
be comprised of components in either XDF or classical BLAST 1.4 format, although both
formats are not supported at the same time. For example:

blastn "pri rod mam vrt htg" myquery.nt

WU BLAST 2.0 supports segmented query sequences, which can be useful for representing, in a
single sequence, the contigs that result from shotgun sequencing assembly or multiple short
probes for a given gene. The feature is easy to employ. All of the contigs from a given clone can
simply be concatenated together with a single hyphen (-) character inserted in between each
contig. In contrast to other methods where long runs of ambiguity codes are inserted between
contigs, segment boundaries are clearly recognizable and consume less storage. BLAST 2.0
honors segment boundaries by guaranteeing that no alignment — ungapped or gapped — will
cross a boundary.

e Multi-sequence query files are supported BLAST 2.0, such that every sequence in the FASTA
file is searched against the specified database. Each search result is separated from the next by a
single ASCII form-feed character (control-L or hex 0x0Oc). See the grecmin and grecmax options.

e The format of all dates (and times) reported in WU BLAST output is controlled by the UN*X
standard crrIME environment variable. Dates will be reported in ISO 8601 format, if crrIME is set
to 'sy-3m-3dT%H:3M:3s'. Dates produced according to ISO 8601 are single tokens that can be
compared lexicographically to immediately recognize their relative chronological order, without
having to parse out and compare the individual date components (year, month, day, hour, etc.)
Dates reported by the xdformat program are also governed by crriMe. The format of many dates
reported by the search programs for XDF databases is determined by the setting (if any) of cFTIME
when the database was created or last modified by xdformat.

e Both sequence filtering and word masking of query sequences are supported. The terms "filter"
and "mask" are sometimes used alone and interchangeably, however there are two distinct
techniques people can use which deserve separate names. Lower case alphabetic letters in the
query sequence can be used to inform the BLAST search program as to which residues it should
either filter (convert to X or N) or mask (skip when generating neighborhood words but
otherwise leave intact). See the Icfilter and lemask options, respectively.

e Multiple filter=<filter> specifications can be requested on the BLAST command line. Each filter
is executed independently and their results are OR-ed at the end.

e Whereas NCBI BLAST 2.0 uses the original external filtering technique of BLAST 1.3 (Gish,
W., unpublished), which utilizes the UNIX popen() system call and temporary files,

WU BLAST 2.0 avoids these problematic system interfaces.

e One or more word masks can be specified on the command line, using the wordmask=<mask>
option, where <mask> may be a classical filter program such as seg, xnu, or dust. Whereas
sequence filters convert certain letters in the query sequence into ambiguity codes (X for amino
acid and N for nucleotide), word masks do not alter the sequence itself. Instead, word masks
cause certain portions of the query sequence to be skipped during the neighborhood word
generation step of the BLAST algorithm. This leaves the query sequence intact for generating
comprehensive alignments seeded by neighborhood word hits involving more informative,
unmasked regions of the sequence.

e The BLAST algorithm's word length parameter, W, can be set from 1 to 1024 in all search modes
(BLASTP, BLASTN, BLASTX, TBLASTN, TBLASTX).

e WU BLAST 2.0 reliably supports parallel processing on a variety of SMP (symmetric
multiprocessing) computing platforms. WU BLAST threads properly across multiple CPUs on
dual-processor Apple PowerMacs running Mac OS X and does not require a G4 processor.
POSIX threads are used under Compaq Tru64 UNIX 4.0+, Linux for X86 and Alpha
processors, IBM AIX, Mac OS X, IRIX 6.5, and HP-UX 11. While POSIX threads are available
under Solaris 2+ (SPARC, X86 and X64), Solaris threads are specifically used instead for
slightly better performance. The IRIX m_fork() system call provides parallel processing under
older versions of IRIX 4 through 6.4; and DCE threads are used under Digital UNIX 3.2.

e To illustrate just some of the flexibility available in WU BLAST 2.0, includes a PERL script
named wu-blastall that translates an NCBI blastall command line into a rough equivalent
WU BLAST command line and then invokes the appropriate WU BLAST search mode. The
output remains in WU BLAST format, but the wu-blastall script may help users of the NCBI
blastall program migrate to WU BLAST and start to discover its power.

NOTE: the wu-blastall script is not intended to provide a literal replacement for the NCBI blastall
program. Aside from being unable to mimic all aspects of the NCBI software, the script is
expected to hinder user's adoption of important features that the NCBI software does not provide,
it directs the software to use less sensitive parameters by default, and may be inappropriate for
assessing the relative performance (sensitivity, specificity, accuracy or speed) of the NCBI and
WU packages.

e The MaskerAid substitute for CrossMatch (Phil Green, unpublished) provides another example
of how the unique combination of flexibility and speed of WU BLAST 2.0 has been applied to
yield 30-fold faster performance of RepeatMasker in its slow mode, while maintaining sensitivity.

e Many additional command line options are available, most of which are described here.

e The WU BLAST package includes a compiled version of the nrdb program for merging identical
sequences into one, as well as the newer patdb program (W. Gish, unpublished) for obtaining
further data compression through perfect substring elimination.

¢ The seg, xnu and dust complexity filter programs are included as distinct programs that can be
executed independently of the BLasT search programs. This facilitates analysis of the precise
segments that are filtered and allows the filters to be utilized in other situations besides just
working with BLast. The WU BLAST search programs also support an echofilter option to
display the filtered segments in the search output.

Please send bug reports, questions, or suggestions to BLAST E-mail

Manifest

The BLAST 2.0 package from Washington University includes the following data analysis and utility
programs:

e blasta — the unified database search program, which provides blastp, blastn, blastx, tblastn,
and tblastx search functionality.

o blastp: compare peptide sequence queries to peptide sequence databases;

o blastn: compare nucleotide sequence queries to nucleotide sequence databases;

o blastx: compare nucleotide sequence queries dynamically translated in all 6 reading frames
to peptide sequence databases;

o tblastn: compare peptide sequence queries to nucleotide sequence databases dynamically
translated in all 6 reading frames;

o tbhlastx: compare nucleotide sequence queries dynamically translated in all 6 reading frames
to nucleotide sequence databases dynamically translated in all 6 reading frames (6 x 6 = 36
pairwise combinations of reading frames).

e xdformat — the recommended program for rapidly converting sequences from FASTA format
into the native XDF format read by blasta. The program can also append new sequences to an
existing database; automatically rollback on errors; provides flexible indexing and verification
services; and can dump data back into FASTA format.

e xdget — a flexible tool for retrieving sequences (or segments thereof) from an indexed XDF
database; retrieved sequences are optionally reverse-complemented and translated in the case of
nucleotide sequences. xdformat and xdget are actually one-and-the-same program, to ensure
their compatibility.

e nrdb — a tool for rapidly removing trivial redundancy (i.e., identical sequences) from one or
more input files in FASTA format. A simple hash table is used, combined with data compression
techniques to allow larger nucleotide sequence data sets to be manipulated in memory.

e patdb — on the surface, merely a poor substitute for the nrdb program, because it uses more
memory when processing nucleotide sequences and yet accomplishes the same task by default.
Hidden within its command line options, though, is the capability of identifying not just identical
sequences — which is all that the nrdb program can do — but identifying sequences that are
perfect substrings of others. (See the -s option of the program). A Patricia tree is used by the
program (hence its name), automatically followed (when necessary) by one or more clean-up
stages that use finite state automata. patdb, with its substring identification option, may be most
usefully applied to protein sequences, which often differ only in their inclusion or exclusion of the
initiator methionine and other post-translational modifications. When identification of perfect
substrings is not desired, the nrdb program is more practical than patdb for processing
nucleotide sequences, because of data compression techniques effectively used by nrdb that are
not available in patdb.

e wu-blastall — a PERL script for converting an NCBI blastall command line into a rough
equivalent blasta command line and then invoking blasta. The output is still in WU BLAST
format. This is primarily intended as a technology demonstration tool but may also assist users in
their migration from NCBI BLAST to the more accurate WU BLAST. For benchmarking of

BLASTS, careful tweaking of parameters may be required, but even with great care,
benchmarking for speed can still be confounded by inaccuracies in NCBI BLAST.

o wu-formatdb — a PERL script for converting an NCBI formatdb command line into the
equivalent xdformat command line and then invoking xdformat. This is primarily intended as a
technology demonstration tool but may also assist users in their migration from NCBI BLAST to
WU BLAST.

e pam — a program to compute amino acid substitution scoring matrices having arbitrary scales,
using the Dayhoff PAM model.

e pressdb.real — the legacy pressdb program for users who are reliant on the NCBI BLAST 1.4
database format for nucleotide sequences.

e setdb.real — the legacy setdb program for users who are reliant on the NCBI BLAST 1.4
database format for amino acid sequences.

o gh2fasta — a parser to extract nucleotide sequences from GenBank flat files into FASTA format.

e gt2fasta — a parser to extract amino acid sequences from CDS features in GenBank flat files and
output them in FASTA format.

e sp2fasta — a parser to extract protein or nucleotide sequences from EMBL, TrEMBL, or
Swiss-Prot database files and output them in FASTA format.

e pir2fasta — a parser to extract protein sequences from NBRF PIR database files and output them
in FASTA format.

e seg — alow-complexity filter for protein and nucleotide sequences (Wootton and Federhen,
1993; Wootton and Federhen, 1996). The program identifies low compositional complexity
regions.

e dust — a low-complexity filter for nucleotide sequences (Hancock and Armstrong, 1994;
Tatusov and Lipman, unpublished).

e xnu — a low-complexity filter for protein sequences (Claverie and States, 1993). The program
identifies short-periodicity repeats.

¢ sysblast.sample — a sample configuration file that system administrators may wish to modify
and install as /etc/sysblast. For all users on a system-wide basis, parameter settings in this file
can be used to establish:

a limit on the number of CPUs or threads employed by each BLasT job;

the default number of CPUs or threads employed per BLaST job;

a "nice" value for BLAST processes;

the maximum amount of memory allocated per BLAST job.

o

o o o

To Fly...

If the gapped alignments are nice, but even more speed or less memory use are desired, read how to
make the programs fly.

Examples

1. One timed benchmark is a BLasTn comparison of unmasked Arabidopsis thaliana chromosomes 2 and
4, which are respectively 19.6 Mbp and 17.5 Mbp in length. The computer used in this particular
example was a quad-processor Pentium/I// Xeon system (550 MHz, 512 KB L2 cache per processor)
running the Mandrake Linux 2.4.22-10mdk kernel. Using a single thread of execution (one processor),
BLASTN 2.0 [29-Apr-2004] required 10 minutes 42 seconds elapsed (wall clock) time (10 minutes
38 seconds CPU time) and approximately 850 MB of memory to search both strands at once with the
command:

wu-blastall -p blastn -d at.chr2 -i at.chr4 -Ff

The same job took 3 minutes 00 seconds elapsed time to complete on a single 2.4 GHz AMD Opteron
model 250 processor running the Linux 2.6.9 kernel.

2. Using the wu-blastall wrapper script and a single processor thread, the 2.18 Mb genome of Neisseria
meningitis serogroup A was compared against the 2.27 Mb genome of Neisseria meningitis
serogroup B in less than 8 seconds elapsed and CPU time.

3. Using the wu-blastall wrapper script, the entire 3.098 Gb human genome reference sequence was
compared to itself using BLASTN 2.0 [15-Nov-2004] on a dual 900 MHz Itanium?2 ("Merced")
processor computer system with 10 GB memory, running Linux 2.4.18, in less than 13 days 2 hours
elapsed time, using two threads (both processors). On a dual 2.4 GHz AMD Opteron system, the same
search was completed within 6 days 21 hours elapsed time. In this study, the human genome sequence
was masked in advance for interspersed repeats and low-complexity regions. Note that the Itanium
system used here was 1-1/2 years older than the Opteron system, and so these benchmarks should not
be construed as pitting two contemporary technologies against each other. Note also that the execution
times reported here would be nearly halved — with no loss of information — had the whole genome
cross comparison not compared the chromosomal sequences to each other twice (e.g., compare
chromosome 1 against chromosome 2 but not chromosome 2 against chromosome 1).

When the seed word length was increased to 14 from its default of 11, the same whole human genome
cross-comparison was completed in less than 19 hours 26 minutes elapsed time on the dual Opteron
system. For this search, approximately 16 GB memory were required. On a quad-processor 1.5 GHz
Itanium?2 system, the job was completed in under 8 hours 54 minutes; for this search, approximately
24 GB memory were required.

The longest sequence in the 42-record human genome sequence data set was a 246 Mb contig for
chromosome 1. It was compared using the default seed word length against the entire genome (including
the chromosome 1 query itself) within 1 day 2 hours elapsed time on the quad Itanium?2 system, within
12 hours 51 minutes elapsed time on the dual Opteron system, and within 11 hours 23 minutes on a
2.5 GHz Quad-processor PowerMac G5 (Processor Performance set to “Highest” in the Energy Saver
control panel).

4. Below are some sample WU BLAST 2.0 results produced using default parameters, with the
exception of the often-recommended seg low-complexity filter and the frequently used -postsw option of
WU BLASTP 2.0. The specific exceptions to the defaults are noted in each case.

Default parameters for NCBI blastall were also used, with the exception of using -G7 -E2 to make the
scoring system identical to the WU default gap penalty of 9 for the first residue in a gap and 2 for
subsequent residues in the gap.

e Example 1 srastpe output produced with and without gaps; with gaps but without Karlin-Altschul
“Sum” statistics; and with gaps and Karlin-Altschul “Sum” statistics but without the -postsw
option.

Example 1 NCBI blastall output.

e Example 2 srastr output produced with and without gaps; and with gaps but without

Karlin-Altschul “Sum” statistics.
Example 2 NCBI blastall output.

e Example 3 sLastp output produced with and without gaps.

Example 3 NCBI blastall output.

Command Line Options
Descriptions of the command line options and parameters available in WU BLAST 2.0 are here.
Environment Variables

As described below and elsewhere, WU BLAST 2.0 supports several environment variables to adapt its
behavior to different computing environments: BLASTDB, BLASTFILTER and BLASTMAT. To support dual

WU/NCBI BLAST installations, WU BLAST also supports the environment variables wuBLASTDB,
wUBLASTFILTER and wuLastuMaT, With the WU versions of these variables taking precedence over the
corresponding non-WU versions when both are set.

In WU BLAST 2.0, the sBr.asTdB (Or wuBLASTDB) environment variable can be a list of one or more
directory names in which the programs are to look for database files. In UNIX parlance, such an
environment variable might be called a path for the database files. Directory names should be delimited
from one another by a colon (":") and listed in the order that they should be searched. If the BLasTDB
environment variable is not set, the programs use a default path of ". : /usr/ncbi/blast/db", such that the
programs first look in the current working directory (".") for the requested database and then look in the
/usr/ncbi/blast/db directory. For backward compatibility with programs that expect BLasTDB to be a
single directory specification and not a path, if the user has set a value for BLasTpB but omitted the current
working directory, the version 2 programs will still look for database files in the current working
directory as a last resort.

The BLASTFILTER (Or WUBLASTFILTER) environment variable can be set to the directory containing the filter
programs, such as seg and xnu. The default directory for the filter programs is /usr/ncbi/blast/filter.
This usage is unchanged from version 1.4.

The BLAsTMAT (Or WUBLASTMAT) environment variable can be set to the parent directory for all scoring
matrix files. The default directory for these files is /usr/ncbi/blast/matrix, beneath which are nt and aa
subdirectories for storing scoring matrix files appropriate for nucleotide and amino acid alphabets. This
usage is unchanged from version 1.4.

For more information about environment variables, see the Installation instructions.

Filters and Masks

WU BLAST provides highly flexible means for applying both “hard” and “soft” masks to a query
sequence; supports alternative, user-defined filter programs; and allows the use of non-standard
parameters to the standard filters. The fiiter option (for hard masking) and the wordmask option (for soft
masking) provide the basic interface. Multiple specifications of each type are acceptable on the BLAST
command line; and individual filter and wordmask specifications may consist of entire pipelines of
commands.

For example, three filters are used in succession by this pipeline:

filter="myfilterl | myfilter2 | myfilter3 -x5 -"

The first two filters in this case are expecting to read their input from UN*X standard input (also known
as stdin), whereas myfilter3 apparently needs to be told (with the usual "-" or hyphen argument) to read
data from stdin. The standard output (stdout) from myfilter] will be read via stdin by myfilter2, which in
turn processes the query before handing its results to myfilter3; finally, myfilter3 reports its results to
stdout, which the BLAST program itself reads to obtain the fully masked sequence. The final output
from the filter pipeline is expected by the BLAST program to be in FASTA format.

Instead of running all 3 filters in the above example as part of one pipeline, they could instead be
specified as separate filter options like this:

filter=myfilterl filter=myfilter2 filter="myfilter3 -x5 -

The same choice of running as a pipeline or running separately is available for wordmasks, too. And of
course the two approaches can be combined on the same command line. An advantage to using the
pipeline approach is that all 3 filters in the example above may complete a little bit faster, because much

of the I/O is avoided. Furthermore, when used in the pipeline, there's no requirement that the output
from myfilter I and myfilter2 actually be in FASTA format. Those two programs could potentially pass
any information between themselves and to myfilter3. The only absolute requirement is that myfilter]
must read FASTA data from stdin and myfilter3 must output FASTA data (of the same length as the
query!) to stdout.

It should be noted that with some filter programs, passing the query sequence sequentially through a
pipeline of filters may yield a different result than processing the query independently with each filter
and OR-ing the results. The script seg+xnu included in the filter/ directory provides an example with
which to test this. Specifying filter=seg+xnu on the BLAST command line invokes a seg and xnu
pipeline that is built-in to the search programs; whereas specifying filter="seg+xnu -" causes the
seg+xnu script to be invoked on the query, which independently executes seg and xnu, then ORs the
separate results with pmerge. (The echofilter option can be used to see the results of filtering displayed
in search program output). While the built-in seg+xnu pipeline is historically the way these two filters
have been implemented, the latter interpretation, as illustrated by the seg+xnu script with pmerge, may
be more desirable.

Bugs

Although WU BLAST is certainly not bug free, historically bugs have been fixed typically within 24
hours of their being reported. No outstanding issues exist with the current version. If you believe you
might be experiencing the effects of a bug, please file a BLAST Bug Report

The software does have some characteristics worth mentioning, however, that could trip up or confuse
even the most knowledgeable of BLAST users. Any unexpected behavior might rightfully be construed
as being a bug, so the following information is provided to help avoid the unexpected. If you should
encounter problems or confusing areas other than those described below, or if you have questions or
suggestions, please send them to BLAST Questions & Suggestions.

e Mac OS X 10.4 “Tiger” has not proven itself to be a reliable platform for 64-bit computing when
performing searches using multiple threads combined with a need for “large” memory (more than
about 2.5 GB). For example, in dozens of attempts to compare the human genome to itself on all
Tiger releases through version 10.4.6, searches never advanced more than one-third of the way to
completion before a system panic arose that required a hard reset — but only when multiple
CPUs or threads were employed. Sometimes a panic was induced after mere minutes had elapsed,
and in other cases several hours or a few days were required. Running in “safe mode” (booting
while holding down the shift key) might alleviate the problem somewhat but certainly does not
eliminate it. (No such issues have been observed with non-Mac platforms. A “user-land”
application such as BLAST should not be capable of causing a panic). In contrast, the same
large-memory jobs when confined to a single CPU have not been observed to induce a panic,
even after nearly 3 weeks of continuous execution. In response to this persistent problem, the
behavior of WU BLAST has been modified specifically in the case of the 64-bit binaries
distributed in blast2.macosx-p64.tar.z. When these 64-bit search programs see that more than
about 2 GB of memory will be needed, they automatically and unconditionally limit themselves to
using a single CPU, regardless of how many CPUs are present in the computer or how many
CPUs the user requests. Only if the memory requirements are seen to be less than 2 GB can
additional CPUs be employed for a single search. For example, all four processors in a Quad G5
system may be employed if the memory requirements are below the threshold. It is worth noting,
however, that for jobs requiring less than 2 GB memory, 64-bit virtual addressing is unnecessary
and speedier execution is usually obtained from the 32-bit, G5-optimized binaries found in the
blast2.macosx-g5.tar.z distribution.

e When BLAST is executed on early 32-bit computing platforms (e.g., Solaris 2.5 and earlier, IRIX
5 and earlier, and Linux 2.2 or earlier), due to a 2 GB file size limit inherent to these operating
systems, users will be unable to search nucleotide sequence databases larger than about 8 billion

nucleotides or 2 billion amino acids. Migrating to a more contemporary 32-bit operating system
— or to a 64-bit computing platform — that provides “largefile” support is sufficient to break
through the “2 GB barrier”.

The statistical significance of gapped alignment scores is computed using values for >\, K and H

that are looked up in precomputed tables. (The values for >\, K and H used in assessing the
significance of ungapped alignment scores are computed at run time, which is practical). Values
are chosen from these tables based on the scoring matrix and gap penalties used. Precomputed
values are not available for all scoring matrix and gap penalty combinations, however; and the
precomputed values may not be well-suited to an unusual residue composition of the query
sequence. When precomputed values are unavailable, the programs issue a WARNING and

proceed to evaluate gapped alignment scores using instead the values of)\ K and H computed for
ungapped alignments, which are almost certainly inappropriate. In such cases, the reported
significance estimates may be highly inaccurate and biased towards over-estimating the
significance (under-estimating the probability of chance occurrence). If the user knows more
accurate values for their situation, the gapK, gapL and gapH command line options should be
used to set them.

Precomputed values for >\, K and H are available for sBLastn searches with the following
match,mismatch (M,N) scoring systems, using gap penalties {Q,R}:

"+1,-3", {3,3} {3,2} {3,1}

"+1,-2", {2,2} {2,1} {1,1}

"+3,-5", {10,5} {6,3} {5,5}

"4+4,-5", {10,5}

"+ll_1"I {311} {211}

"+5,-4", {20,10} {10,10}

"45,-11", {22,22} {22,11} {12,2} {11,11}

and for the Purine-Pyrimidine scoring matrix named “pupy”:

pupy =
{ 20, 10}
{ 10, 10}

Precomputed values for >\, K and H are available for protein-level searches with the following
scoring matrix and gap penalty combinations (or gap penalty ranges for R) {Q, R}:

blosum50 =
16, 1-4
15, 1-4
14, 1-5
13, 1-5
12, 2-5
11, 2-4
10, 2-6
9, 3-5,
8, 4-8}
7, 6,7}

e T T e T T T NP SOP SRS,

blosum55
16, 1
15, 1
14, 1
13, 2-
2
2

12,
11,

B e e e)

0, 3-6,9}
’ 3_517}
’ 4_8}
7}

A A A
~N 00 O

blosum62
12, 1-3}
11, 1-3}
10, 1-4}
9, 1-5}
8, 2-7}
7, 2-6}
6, 3-5}
5, 5}

e e e e e)

blosum80 =
{ 12, 2-12}
{ 11, 2-11}
10, 2-10}
9, 3-9}
8, 4-8}
7, 5-7}

A A A

o}
:
o

1

12, 1,2,6}
11, 1,2,7}
10, 1-3,7}
9, 1-3,6}
¢, 1-4}

¢, 1-4}

’ 2_5}
’ 2_5}
r 3,4}

B e e e e

{12, 1,2,4}
11, 1-3}
10, 1-3,5)}
9, 1-3,5}
8, 1-4,6}
7, 2-4,6}
6, 2-5}
5, 3-5}

{ 16, 1-4}
15, 1-5}
14, 1-6}
13, 1-6}
12, 2-7}

2-7}

10, 3-8}

9, 3-7}

8, 5-7}

7, 7}

e e e e T N
=
[
~

¢ Selecting an alternative scoring matrix does not alter the gap penalties (Q and R) from their
default values. This can not only result in alignments with undesirable gap characteristics, but
depending on the scoring matrix chosen, this can unwittingly create a situation in which the

programs do not have precomputed values for)\ K and H. As described earlier, a WARNING
message will be displayed when precomputed values are not available; nevertheless, the statistics
will be unreliable.

e The hspsepOmax and hspsepSmax parameters are measures of distance in residues along the
sequences in the specific form in which they are being compared. For instance, in a BLASTx search,
where the query sequence is conceptually translated, the hspsepOmax distance is in units of
amino acid residues, not the underlying nucleotides of the query.

e The gap penalty parameters Q and R of WU BLAST have similar but important differences in
interpretation from the parameters G and E of NCBI Gapped BLAST. While the two extension
penalties R (WU BLAST) and E (NCBI BLAST) are analogous, Q (WU BLAST) is analogous
to the sum of G and E with NCBI BLAST. In other words, where Q is the total penalty for a gap
of length 1, NCBI Gapped BLAST computes this penalty as G + E.

Supported Platforms

The computing platforms currently supported by BLAST 2.0 include the following:

e Apple Mac OS X 10.1 through 10.4 for PowerPC G3 and G4; Mac OS X 10.3 and 10.4 for
PowerPC G35, including 64-bit virtual addressing (Mac OS X 10.4 only); Mac OS X 10.4 for
Intel X86 processors; “Universal” binaries for Mac OS X 10.4

Compaq Tru64 UNIX 5.0A for generic Alpha and Alpha EV5, EV56, EV6, and EV67
FreeBSD 4.x, 5.x and 6.x for Intel 1686 (PentiumPro/I1/II]) and X64*

Hewlett-Packard HP-UX 11 for Intel IA-64 (Itanium)

IBM AIX 5.2 for Power3, Power4 and Power5

Linux kernel version 2.2 for 1586 (original Pentium) and 1686 (PentiumPro/Il/IIT)

Linux kernel version 2.4 with Linux threads for 32-bit 1686 (PentiumPro/I1/11]) and 1786

(Pentium4); and 64-bit Intel IA-64 (Itanium) and X64*

e Linux kernel version 2.4 with Native POSIX Threads (NPTL) support for 32-bit and 64-bit
PowerPC, PPC970, Power3, Powerd and Power5

e Linux kernel version 2.6 with Native POSIX Threads (NPTL) support for 32-bit i686 and i786;

and 64-bit Intel IA-64 (Itanium) and X64*

SGI IRIX 6.5 for MIPS R5000, R10000, R12000, R14000 and R16000
Sun Solaris 8 for SPARC and UltraSPARC

Sun Solaris 9 and higher for Intel 1686 (PentiumPro/Il/1IT)

Sun Solaris 10 for 64-bit X64*

*X64 is shorthand for the AMD “AMD64” and Intel “EM64T” microprocessor architectures, which
support 64-bit virtual addressing. X64 binaries often provide significantly better performance than their
32-bit counterparts built for the legacy 32-bit architecture known as X86. The X64 architecture is
sometimes referred to by another vendor-agnostic name, X86_64.

The list of supported platforms is subject to change without notice. It was last updated
28-Jan-2006.

Multiple processors (multithreading or parallel processing) are effectively and efficiently supported by
WU BLAST on all of the above platforms. The software also supports large files (files greater than

2 GB in size) when the underlying operating system and file system support large files (which is
typically the case these days).

WU BLAST was the only BLAST available for Mac OS X when Mac OS X became publicly available
— and for months thereafter. Under Mac OS X, WU BLAST has been observed to be the only BLAST
that runs faster on multiple G4 processors, conditions in which some implementations actually run
slower and are unstable. There is no evidence that vector processing instructions (such those provided

by Velocity Engine) increase the speed of BLAST searching, but these instructions certainly can restrict
the software to running only on certain computers. WU BLAST obtains its superior speed through
painstaking optimizations, without using specialized instructions, so users can run WU BLAST even on
a G3. Because the software employs a command line interface, it can also be run on the freely available
OpenDarwin operating system.

Installation

Please refer to the README . htnl file that comes bundled with the software for more detailed and specific
installation instructions.

Low-complexity sequence filters or masking programs — e.g., seg, xnu and dust — are bundled in
WU BLAST software packages. Whatever directory you install the filter programs in, the BLASTFILTER
environment variable should be set to point there. In the absence of this environment variable being set,
the programs look for masking programs in /usr/ncbi/blast/filter. NOTE: unlike the NCBI search
programs, WU BLAST does not employ sequence filtering by default.

Databases can be downloaded from any of the many sources available on the Internet. After
downloading, the database files are typically uncompressed and processed into FASTA format, then
into a BLAST-able database format. Included with WU BLAST software are several utility programs
for converting text-based database files into FASTA format:

o gh2fasta converts the nucleotide sequences in GenBank flat files into FASTA format.

o gt2fasta converts the CDS translations (peptide sequences) in GenBank flat files into FASTA
format.

o sp2fasta converts EMBL or SWISS-PROT flat files into FASTA format.

The NCBI software Toolbox also contains parsers, including one named asn2fast that can convert both
nucleotide and peptide sequences in GenBank ASN.1 format into FASTA format files.

All of the above parsers can read from standard input (sometimes signified by a dash, “-”’), so their input
files can be maintained on disk in compressed format and dynamically zcat-ed or gunzip-ed directly into
the parsers, thus saving the time and storage required for the uncompressed data. To specify standard
input for a required input filename argument, some of these programs require that a double-dash (--)
precede the single-dash. This double-dash signifies the end of the command line options and the start of
the required arguments.

Once databases are in FASTA format, the xdformat program is used to convert them into a blastable
eXtended Database Format. Terse usage instructions for this program can be obtained by invoking it
without command line arguments. When producing a blastable database, xdformat creates 3 or 4 output
files whose names by default are derived from the name of the input FASTA-format file. The output
files are given distinct filename extensions and together comprise the blastable database. More
information about blastable database file formats is available here.

The blastable database files can be placed anywhere, but the BLASTDB environment variable should
point to their directory location. If the BLASTDB environment variable is not set, the programs look for
databases in /usr/ncbi/blast/db and in the current working directory. On systems where NCBI BLAST
will not be used, databases can be maintained in multiple directories listed in the BLASTDB
environment variable, delimiting the directory names with colons, just as directory names are delimited
in the PATH environment variable used by UNIX command shells.

On multi-processor computer systems, the search programs will by default employ as many CPUs as
are installed (or up to 4 CPUs in the case of BLastn). Using too many processors — sometimes even
two processors — can be inefficient or lead to prohibitive memory requirements. Depending on how

many processors and how much memory are installed in your computer, you may want to wrap the
search programs in a shell script that sets a lower number of CPUs via the cpus=# command line
option. Another approach to changing the default number of CPUs follows below, for BLAST
managers brandishing “root” or “SuperUser” privileges.

A sample file named sysblast.sample is bundled with the software, to help in establishing system-wide
configuration parameters governing the behavior of BLAST processes. When installed under the name
/etc/sysblast,

e the default number of CPUs employed can be altered;
e a hard limit can be imposed on the number of CPUs employable by any single BLAST process;
¢ and the “nice” (execution priority) value of BLAST processes can be set.

The file /etc/sysblast resides in a directory that is local to any given computer, so parameter values can
be configured differently for different computers, even if the software itself is accessed from a shared
disk partition. sysblast is only effective if installed in the /etc directory; and the /etc directory should
only be writable by “root”. See the comments included in sysblast.sample file for further details. Unlike
the shell script wrapper approach described earlier, limits set in /etc/sysblast can not be easily or
unwittingly circumvented.

Citing WU-BLAST

Citations or acknowledgements of WU-BLAST usage are greatly appreciated, as are any personal
accounts of how the software is being used that you might wish to share. When URLSs are acceptable,
please cite with:

Gish, W. (1996-2004) http://blast.wustl.edu
When URLSs are not acceptable, please use:

Gish, W., personal communication.
The WU-BLAST unified search program may also be referred to by the name BLASTA.
In scientific communications, it is important to report the program name, as well as the specific
version(s) used. In the case of WU-BLAST or BLASTA, the version is a combination of the "2.0"
moniker and the release date. The release date can be found on the first line of output, and it is the first
date displayed. For example, consider this introductory line of output:

BLASTN 2.0MP-WashU [02-Apr-2002] [sol8-ultra-ILP32F64 2002-04-03T01:25:46]

In the above, the software release date is April 2, 2002, whereas the build date of the Solaris 8
UltraSPARC binary executable was April 3rd at 1:25 AM.

Historical Notes

WU BLAST 2.0 is the original gapped BLAST with statistics. It builds upon BLAST 1.4 written by
Warren Gish in 1994, while a fellow at the NCBI. (See http://blast.wustl.edu/blast-1.4; Altschul ez al.,
1990; Gish and States, 1993). Both NCBI BLAST and WU BLAST 1.4 (but not 2.0) are in the public
domain.

Development of BLAST version 2 with gapped alignments was begun by W. Gish as an independently
funded research and development effort at Washington University in late 1994, where it continues as
such today. WU BLAST 2.0 was initially released as free, copyrighted software in May 1996, before

the NCBI expressed an interest in pursuing this area and 16 months ahead of the NCBI releasing its
public domain gapped alignment tools in September 1997. Beginning in October 1997, in response to
the NCBI release, more advanced versions of WU BLAST were made available only under the covenant
of a license agreement. The last freely available (and now long obsolete) version of WU BLAST is
2.0a19, posted in February 1998.

Historical notes and additional citation information for some earlier versions of NCBI and WU BLAST
include:

e The first description of the classical ungapped BLAST algorithm was published by Altschul ez al.
(1990). The paper touts the flexibility of the pattern matching algorithm and describes the
implementation of BLasTp and BLasTn. Development of BLastx is alluded to, but TBLASTN Was
actually the third search mode implemented. A version of BLAST is also mentioned that uses a
complex, dynamic programming scheme to extend hits and allow gaps in alignments, but the
approach was far too slow. In addition, selectivity was compromised because satisfactory
statistics were unavailable for evaluating the gapped alignment scores.

¢ Some of the novel methodologies contributed to the BLAST project by W. Gish include the use
of: 4-to-1 compression of nucleotide sequence databases to reduce I/O costs; searching nucleotide
databases natively in their compressed form for higher speed; memory-resident databases to
reduce I/O bottlenecks; parallel processing for faster response to individual queries; deterministic
finite state automata (DFA), to find seed words faster while often using less memory than a
simple lookup table; placement of sentinel bytes at the beginning and end of sequences to facilitate
faster word hit extensions; transparent execution of external “filter” programs to pre-process
query sequences prior to a search (e.g., to mask low-complexity regions).

e The NCBI Experimental BLAST Network Service (W. Gish, unpublished) was opened to the
public in December 1989, providing Internet access to the latest versions of the BLAST programs
and sequence databases updated on a daily basis. Searches were executed individually in parallel
across the 8-processors of a Silicon Graphics Power IRIS server. Around the same time, the "nr"
(quasi-non-redundant) databases were established (W. Gish, unpublished). At the request of
NCBI management, a description of the experimental service was never published. Nevertheless,
awareness of the service spread quickly by word-of-mouth, as is the case with WU BLAST. The
experimental form of the service was ultimately discontinued more than a decade later, in March
2000.

o BrasTX first appeared in BLAST 1.1 in July 1990, and was later described and characterized by
Gish and States (1993). The BrasT3 program (Altschul and Lipman, 1990) was also folded into
the 1.1 release and parallelized. The use of Poisson statistics, as suggested by Karlin and Altschul
(1990) to evaluate the joint probability of multiple HSPs, was also first featured in BLAST 1.1.

e BLASTC, a version of BLasTx that considered codon usage information in addition to sequence
similarity (States and Gish, 1994), only appeared in the BLAST 1.3 distribution. The BLAST 1.3
distribution was also the last to include the BLasT3 program.

o The first version of BLAST to use Karlin and Altschul (1993) “Sum” statistics to evaluate the
joint probability of multiple HSPs was BLAST 1.4 (W. Gish, unpublished).

o TBLASTX first appeared in BLAST 1.4 and remains attributable to W. Gish (unpublished).

e The first release of WU BLAST was version 1.4, which was virtually identical to NCBI
BLAST 1.4, save for a few bug fixes. The WU BLAST Archives (http://blast.wustl.edu) first
appeared on the Internet in 1995, to provide continued support for the work begun at the NCBI,
as well as to provide a central location where BLAST-related software, information, and earlier
software versions could be obtained.

¢ Upon my invitation, Stephen Altschul entered into a collaboration with me in late 1994, to provide

support for my conjecture that pre-computed values for >\, K and H — along with Sum statistics
for joint probability calculations on multiple HSP scores — could be usefully applied to the
evaluation of locally optimal gapped alignment scores. Results from this work eventually
appeared in Altschul and Gish (1996) and provide much of the foundation for today's

WU BLAST 2.0 (and NCBI blastall).

e The original gapped BLAST package (BLASTP, BLASTN, BLASTX, TBLASTN and TBLASTX) With statistical
significance estimates was publicly released as WU-BLAST 2.0a, just in time for presentation at
the Cold Spring Harbor Genome Mapping and Sequencing conference in May of 1996. The
software provided the full complement of BLAST search modes (BLASTP, BLASTN, BLASTX, TBLASTN
and TBLAsTX) and could evaluate the significance of alignment scores using standard
Karlin-Altschul statistics, Poisson statistics or Sum statistics as described by Altschul and Gish
(1996). The enhanced software package was a virtual drop-in upgrade for users of the previous
ungapped BLAST 1.4.

¢ In addition to the new statistics, WU-BLAST 2.0 utilized novel ideas for making gapped
alignments both practical (from a performance perspective) and effective (from a
sensitivity/selectivity perspective) for high-throughput systems. The ungapped HSPs from a
classical BLAST search were utilized as seeds for finding gapped alignments much as FASTA
did (Pearson and Lipman, 1988). However, unlike FASTA, BLAST applied the gapped
alignment step to all HSPs, not just a select one, and it used a secondary drop-off score (X) in the
gapped alignment phase, rather than necessarily continuing expensive dynamic programming
steps all the way to the ends of the sequences. By “gapping” all HSPs, computing joint
probability calculations on consistent sets of alignment scores, and reporting all alignments that
satisfy a statistical significance threshold, BLAST gained an advantage in sensitivity over FASTA
and even the Smith-Waterman algorithm, which report only the single highest scoring alignment.

e The NCBI published its version 2 of BLAST, or Gapped BLAST, including a description of the
2-hit BLAST for protein searches and PSI-BLAST algorithms, in Altschul ez al. (1997), in
September 1997. Almost immediately a faster, more sensitive variation of the NCBI 2-hit BLAST
algorithm was implemented uniformly and provided as an option in WU-BLAST across all search
modes (including BLASTN).

e The NCBI published a description of PHI-BLAST in Zhang et al. 1998.

References

Altschul, SF, and W Gish (1996). Local alignment statistics. ed. R. Doolittle. Methods in
Enzymology 266:460-80.

Altschul, SF, and DJ Lipman (1990). Protein database searches for multiple alignments.
Proc. Natl. Acad. Sci. USA 87:5509-13.

Altschul, SF. Gish, W. Miller, W. Mvers. EW. and DJ Lipman (1990). Basic local alienment search
tool. J. of Mol. Biol. 215:403-10.

Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, and DJ Lipman (1997).
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 25(17):3389-402.

Claverie, JM, and DJ States (1993). Information enhancement methods for large scale sequence
analysis. Computers in Chemistry 17:191-201.

Gish, W, and DJ States (1993). Identification of protein coding regions by database similarity search.
Nature Genetics 3:266-72.

Hancock, JM, and JS Armstrong (1994). SIMPLE34: an improved and enhanced implementation for
VAX and Sun computers of the SIMPLE algorithm for analysis of clustered repetitive motifs in
nucleotide sequences. Comput. Appl. Biosci. 10:67-70.

Karlin, S, and SF Altschul (1990). Methods for assessing the statistical significance of molecular
sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87(6):2264-8.

Karlin, S, and SF Altschul (1993). Applications and statistics for multiple high-scoring segments in
molecular sequences. Proc. Natl. Acad. Sci. 90:5873-7.

Pearson, WR, and DJ Lipman (1988). Improved tools for biological sequence comparison. Proc. Natl.
Acad. Sci. 85(8):2444-8.

Smith, TF, and MS Waterman (1981). Identification of common molecular subsequences.
J. Mol. Biol. 147:195-7.

States, DJ, and W Gish (1994). Combined use of sequence similarity and codon bias for coding region
identification. J. Comp. Biol. 1:39-50.

Wootton, JC, and S Federhen (1993). Statistics of local complexity in amino acid sequences and
sequence databases. Computers in Chemistry 17:149-63.

Wootton, JC, and S Federhen (1996). Analysis of compositionally biased regions in sequence
databases. ed. R. Doolittle. Methods in Enzymology 266:554-71.

Zhang, Z, Schaffer, AA, Miller, W, Madden, TL, Lipman, DJ, Koonin, EV, and SF Altschul (1998).
Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res. 26:3986-90.

Return to the WU BLAST Archives home page

Copyright © 2005 Warren R. Gish, Saint Louis, Missouri 63108 USA. All rights reserved.

