MUMMER 3 MANU A L

Table of Contents

1. Introduction
1. Description
2. Comparative genomics
1. Available sequence
2. Human vs. Human
3. OSI open source
2. Installation
1. System requirements

2. Obtaining MUMmer
3. Compilation and installation

3. Running MUMmer
4. Use cases and walk-throughs
1. Aligning two finished sequences
1. Highly similar sequences without rearrangements

2. Highly similar sequences with rearrangements
3. Fairly similar sequences

4. Fairly dissimilar sequences

2. Aligning two draft sequences

3. Mapping a draft sequence to a finished sequence
4. SNP detection

5. Identifying repeats
5. Program descriptions

1. Maximal exact matching
1. mummer

2. repeat-match

3. exact-tandems
2. Clustering

1. gaps

2. mgaps

3. Alignment generators
1. NUCmer

2. PROmer

3. run-mummer]

4. run-mummer3
4. Utilities

. delta-filter

mapview
mummerplot
show-aligns
show-coords
show-snps
. show-tiling
6. Known problems
7. Acknowledgements
8. Contact information

NNk W~

1. Introduction

MUMmer is an open source software package for the rapid alignment of very large DNA and amino acid
sequences. The latest version, release 3.0, includes a new suffix tree algorithm that has further improved
the efficiency of the package and has been integral to making MUMmer an open source product. If you
are familiar with the previous versions of MUMmer, you will find the new version is very similar because
most of the changes have been to the implementation and not the interface, however this document
assumes no previous experience with MUMmer, so past users may find it desirable to skip or skim
through some of the sections.

1.1. Description

MUMmer is a modular and versatile package that relies on a suffix tree data structure for efficient pattern
matching. Suffix trees are suited for large data sets because they can be constructed and searched in linear
time and space. This allows mummer to find all 20 base pair maximal exact matches between two ~5 million
base pair bacterial genomes in 20 seconds, using 90 MB of RAM, on a typical 1.7 GHz Linux desktop
computer. Using a seed and extend strategy, other parts of the MUMmer pipeline use these exact matches
as alignment anchors to generate pair-wise alignments similar to BLAST output. Also included are some
utilities to handle the alignment output and a primitive plotting tool (mummerplot) that allows the user to
convert MUMmer output to gnuplot files for dot and percent identity plots. Another graphical utility
called MapView is included with the MUMmer distribution and displays sequence alignments to a
annotated reference sequence for exon refinement and investigation.

This modular design has an important side effect, it allows for the easy reuse of MUMmer modules in
other software. For instance, one can imagine primer design, repeat masking and even comparative
annotation tools based on the efficient matching algorithm MUMmer provides. Another advantage of
MUMmer is its speed. Its low runtime and memory requirements allow it to be used on most any
computer. MUMmer's efficiency also makes it ideal for aligning huge sequences such as completed and
draft eukarotic genomes. MUMmer has been successfully used to align the mouse and human genomes,
showing it can handle most any input available. In addition, its ability to handle multiple sequences
facilitate many vs. many searches, and make the comparison of unfinished draft sequence quite simple.
However, because of it's many abilities, inexperienced users may find it difficult to determine the best
methods for their application, so please refer to the Running MUMmer and Use cases sections for brief
descriptions, use case examples, and tips on making the most of the MUMmer package, or if you want to
understand more about a specific utility, refer to Program descriptions section for more detailed
information and output formats.

1.2. Comparative genomics
1.2.1. Available sequence

The MUMmer package provides efficient means for comparing an entire genome against another.
However, until 1999 there were no two genomes of sufficient similarity to compare. With the publication
of the second strain of Helicobacter pylori in 1999, following the publication of the first strain in 1997,
the scientific world had its first chance to look at two complete bacterial genomes whose DNA sequences
were highly similar. The number of pairs of closely-related genomes has exploded in recent years,
facilitating many comparative studies. For instance, the published databases include the following
genomes for which multiple strains and/or multiple species have been sequenced:

multiple strains of... multiple species of...
o Agrobacterium tumefaciens e Bacillus
e Bacillus anthracis o Chlamydia
e Brucella melitensis o Clostridium
e Buchnera aphidicola o Corynebacterium
o Chlamydophila pneumoniae e Lactobacillus

Escherichia coli e Listeria

e Helicobacter pylori e Methanosarcina
e Mycobacterium tuberculosis e Mycobacterium
o Neisseria meningitidis e Mycoplasma
o Staphylococcus aureus e Plasmodium
o Streptococcus pyogenes e Pseudomonas
o Streptococcus pneumoniae e Pyrococcus
o Yersinia pestis e Rickettsia
e Saccharomyces
e Staphylococcus
o Streptococcus
e Thermoplasma
o Vibrio
o Xanthomonas
o Xylella

Most of these genomes can be obtained from the NCBI ftp site: ftp://ftp.ncbi.nlm.nih.gov/genomes/

1.2.2. Human vs. Human

With the capability to align the entire human genome to itself, there is no genome too large for MUMmer.
The following table gives run times and space requirements for a cross comparison of all human
chromosomes. The 1st column indicates the chromosome number, with "Un" referring to unmapped
contigs. Column 2 shows chromosome length and column 4 shows the length of the total genomic DNA
searched against the chromosome in column 1. Column 3 shows the time to construct the suffix tree, and
column 5 the time to stream the query sequence through it. Column 6 shows the maximum amount of
computer memory occupied by the program and data, and column 7 shows memory usage for the suffix
tree in bytes per base pair. Each human chromosome was used as a reference, and the rest of the genome
was used as a query and streamed against it. To avoid duplication, we only included chromosomes in the
query if they had not already been compared; thus we first used chromosome 1 as a reference, and
streamed the other 23 chromosomes against it. Then we used chromosome 2 as a reference, and streamed
chromosomes 3-22, X, and Y against that, and so on.

Chr Ref length Suffix time Qry length Query time Total space Suffix space

(Mbp) (min) (Mbp) (min) (Mb) (bytes/bp)

1 221.8 24.6 2617.1 679.5 3702 15.43

2 237.6 27.4 2379.5 625.8 3908 15.43

3 194.8 21.2 2184.7 565.0 3232 15.43

4 188.4 22.4 1996.3 518.0 3121 15.43

5 177.7 18.6 1818.6 461.4 2952 15.43

6 175.8 17.9 1642.8 407.6 2900 15.43

7 153.8 15.7 1489.0 360.1 2550 15.43

8 142.8 14.4 1346.2 322.3 2378 15.43

9 117.0 10.7 1229.2 303.7 1974 15.43

10 131.1 13.2 1098.1 263.3 2195 15.43
11 133.2 13.1 964.9 225.6 2228 15.43
12 129.4 12.5 835.5 195.9 2168 15.43
13 95.2 8.6 740.3 163.6 1633 15.44
14 88.2 7.5 652.1 141.0 1523 15.44
15 83.6 6.8 568.5 122.1 1451 15.44

16 80.9 6.4 487.6 106.3 1409 15.44

17 80.7 6.6 406.9 91.8 1406 15.44

18 74.6 6.3 332.3 78.8 1311 15.44
19 56.4 3.7 275.8 56.1 1026 15.45
20 59.4 4.6 216.4 45.8 1073 15.45
21 33.9 2.1 182.5 33.7 673 15.48
22 33.8 2.0 148.6 26.4 672 15.48
Un 1.4 0.03 147.3 10.0 164 16.96
X 147.3 14.6 4.8 2327 15.57

The Human Chromosomes can be obtained from the NCBI ftp site:
ftp://ftp.ncbi.nih.gov/genomes/H sapiens/

1.3. OSI open source

The key difference between version 3.0 and previous versions of MUMmer, is its
qualification as an open source project. Previous versions of MUMmer were always
free for non-profit, but now MUMmer is free for all organizations, both for- and
non-profit. Please refer to the L1cENSE file included in the package for a description of
the Artistic License, the same OSI certified open source license used by Perl and o
countless other packages. We encourage you to contact us (though you are not OSl certified
required to) if you wish to contribute to our ongoing improvement and development

of the software, and simple suggestions on how to improve MUMmer are always

welcome. Enjoy the freedom of open source!

™

To receive software update notices, please join the MUMmer mailing list. This list will
only be used to announce major version releases and help us keep track of MUMmer
users.

2. Installation

MUMmer comes as a source distribution only, and needs to be compiled before use. This sections
describes the steps and requirements necessary to compile the package. Installation problems are usually
caused by incompatible versions of one or more OS utilities, so if installation fails please check that you
have the needed system requirements before alerting us of your problem. The 1nsTaALL file included in the
source distribution also contains much of the same information provided in this section.

2.1. System Requirements

MUMmer is mostly written in C and C++. With some technical expertise it could be ported to any system
with a C++ compiler, but our distribution was specifically designed to be compiled with the GNU GCC
compiler and has been successfully tested on the following three platforms:

e Redhat Linux 6.2 and 7.3 (Pentium 4)
e Compag Tru64 UNIX 5.1 (alpha)

e SunOS UNIX 5.8 (sparc)

e Mac OS X 10.2.8 (PowerPC G4)

MUMmer also requires some third party software to run successfully. In the absence of one or more of the
below utilities, certain MUMmer programs may fail to run correctly. Listed in parenthesis are the versions
used to test the MUMmer package. These versions, or subsequent versions should assure the proper
execution of the various MUMmer programs. These utilities must be accessible via the system path:

e make (GNU make 3.79.1)

e perl
e sh

(PERL 5.6.0)
(GNU sh 1.14.7)
e csh (tcsh 6.10.00)
e g++ (GNU gcc 2.95.3)
(
(
(

e sed GNU sed 3.02)
e awk GNU awk 3.0.4)
e ar GNU ar 2.9.5)

For running the MUMmer display programs, these additional system utilities are required:

e fig2dev (fig2dev 3.2.3)
e gnuplot (gnuplot 4.0)
e xfig (xfig 3.2)

Sufficient memory and disk space are also necessary, but required sizes vary considerably with input size,
so please be aware of your disk and memory usage, as insufficient capacities will result in incorrect or
missing output. In general, 512 MB of RAM and 1 GB of disk space is sufficient for most mid-sized
comparisons. For Mac OSX, the Mac development kit must be downloaded and installed. This kit will
include gcc, ar, and make which are necessary for building MUMmer. MUMmer is not supported for any
Mac operating system other than OSX.

2.2. Obtaining MUMmer

The current MUMmer release can be downloaded from our SourceForge.net project page.

2.3. Compilation and installation

For explanation purposes, let's suppose you just downloaded the MUMmer3.0.tar.gz distribution from the
SourceForge site. The first step would be to move this file to the desired installation directory and type:

tar -xvzf MUMmer3.0.tar.gz

to extract the MUMmer source into a MuMmer3.0 subdirectory. Switch to this newly created subdirectory
and execute:

make check

to assure the makefile can identify the necessary utilities. If no error messages appear, the diagnostics were
successful and you may continue. However, if error messages are displayed, the listed programs are not
accessible via your system path. Install the utilities if necessary, add them to your system PATH variable,
and continue with the MUMmer installation by typing:

make install

This will attempt to compile the MUMmer scripts and executables. If the make command issues no errors,
the compilation was successful and you are ready to begin using MUMmer. If the command fails, it is
likely that make was confused by the existence of more than one copy of the same utility, such as two
versions of gcc. When this happens, it is important to arrange you system PATH variable so that the more
recent versions are listed first, or to hard code the location of your utility location in the makefile. The
same advice goes for your LD_LIBRARY PATH variable if your system is having a difficult time locating the
appropriate C or C++ libraries at runtime.

It is important to note that the make command dynamically builds the MUMmer scripts to reference the
install directory, therefore if the install directory is moved after the make command is issued the MUMmer
scripts will fail. If you need certain MUMmer executables in a directory other than the install directory, it
is recommend to leave the install directory untouched and link the needed executables to the desired
destination. An alternative would be to move the install directory and reissue the make command at the

new location.

3. Running MUMmer

The five most commonly used programs in the MUMmer package are mummer, nucmer, promer, run-mummer 1
and run-mummer3, so this section covers the basics of executing these tools and what each of them
specializes in. To better understand how to view the outputs of these programs, please refer to the use
cases section or the MUMmer examples webpage for a brief walk-through of each major module with full
input data and expected outputs. For further information, please refer to the Program descriptions section
for a detailed explanation of each program and its output.

mummer

mummer efficiently locates maximal unique matches between two sequences using a suffix tree data
structure. This makes mummer most suited for generating lists of exact matches that can be displayed as a
dot plot, or used as anchors in generating pair-wise alignments.

mummer [options] <reference file> <query filel> . . . [query file32]

There must be exactly one reference file and at least one query file. Both the reference and query files
should be in multi-FastA format and may contain any set of upper and lowercase characters, thus DNA
and protein sequences are both allowed and matching is case insensitive. The maximum number of query
files is 32, but there is no limit on how many sequences each reference or query file may contain. Output
is to stdout. Refer to the mummer section for a list of options and output descriptions.

NUCmer

NUCmer is a Perl script pipeline for the alignment of multiple closely related nucleotide sequences. It
begins by finding maximal exact matches of a given length, it then clusters these matches to form larger
inexact alignment regions, and finally, it extends alignments outward from each of the matches to join the
clusters into a single high scoring pair-wise alignment. This makes NUCmer most suited for locating and
displaying highly conserved regions of DNA sequence. To increase NUCmer's accuracy, it may be
desirable to mask the input sequences to avoid the alignment of uninteresting sequence, or to change the
uniqueness constraints (see the NUCmer section) to reduce the number of repeat induced alignments.

nucmer [options] <reference file> <query file>

Both the reference and query files should be in multi-FastA format and may contain any set of upper and
lowercase characters, however only the DNA characters a, c, t and g will be aligned (case insensitive).
There is no limit on how many sequences the reference or query files may contain. Output is written to the
files out.cluster and out.delta. Each is an ASCII file, but not formatted for human consumption, so it is
necessary to run a utility program to parse the output. The two primary utility programs for viewing the
contents of a .delta file are show-aligns, and show-coords. show-aligns displays all of the pair-wise
alignments between two sequences, while show-coords displays a summary of the coordinates, percent
identity, etc. of the alignment regions. Refer to the NUCmer section for a list of options and output
descriptions.

PROmer

PROmer is a Perl script pipeline for the alignment of multiple somewhat divergent nucleotide sequences. It
works exactly like NUCmer, but with a small twist. Before any of the exact matching takes place, the input
sequences are translated in all six amino acid reading frames. This allows PROmer to identify regions of
conserved protein sequences that may not be conserved on the DNA level and thus gives it a higher
sensitivity than NUCmer. Note however, this increase in sensitivity will result in huge amounts of output
for highly similar sequences, therefore it is recommended that PROmer only be used when the input

sequences are too divergent to produce a reasonable amount of NUCmer output. As with NUCmer, it is
recommended to mask the input sequences to avoid the alignment of uninteresting sequence, or to change
the uniqueness constraints (see the PROmer section) to reduce the number of repeat induced alignments.

promer [options] <reference file> <query file>

Both the reference and query files should be in multi-FastA format and may contain any set of upper and
lowercase characters, however only valid DNA characters will result in correctly translated sequence, all
other characters will be translated into masking characters and therefore will not be matched by the
BLOSUM scoring matrix. There is no limit on how many sequences the reference or query files may
contain. Output is written to the same files as NUCmer and can also be viewed with the same utility
programs (see above). Refer to the PROmer section for a list of options and output descriptions.

run-mummerl and run-mummer3

run-mummerl and run-mummer3 are cshell script pipelines for the general alignment of two sequences. They
follow the same three steps of NUCmer and PROmer, in that they match, cluster and extend, however they
handle any input sequence, not just nucleotide. This non-discrimination can be useful, however the
program interface is not very user friendly and the output can be difficult to parse. In their favor, the
run-mummer* programs are good at aligning very similar DNA sequences and identifying their differences,
this makes them well suited for SNP and error detection. run-mummer1 is recommended for one vs. one
comparisons with no rearrangements, while run-mummer3 is recommended for one vs. many comparisons
that may involved rearrangements. Sequence masking is only recommended if a different character is
used to mask the reference and query sequences so that they are not aligned.

run-mummerl <reference file> <query file> <prefix> [-r]
or
run-mummer3 <reference file> <query file> <prefix>

The reference and query files should both be in FastA format and may contain any set of upper and
lowercase characters. The reference file may only contain a single sequence, and run-mummer1 only allows
a single query sequence, but run-mummer3 has no limit on the number of query sequences . The -r option
for run-mummer1 reverses the query sequence, while run-mummer3 automatically finds both forward and
reverse matches. Output is written to the files <prefix>.out, <prefix>.gaps, <prefix>.errorsgaps and
<prefix>.align. There are no utilities included to parse these files, so they must be viewed as raw text files.
Refer to the run-mummerl and run-mummer3 sections for info on changing the program parameters and
output descriptions.

4. Use cases and walk-throughs

Because of its breadth, MUMmer can be overwhelming at first, and sometimes the hardest part of using
MUMmer is deciding which alignment program to run for a particular application. This section attempts
to overview some of the basic MUMmer use cases and propose the best MUMmer alignment routine for
each case. This section only gives a set of command line calls to generate alignments for each use case.
For further information, please refer to the Program descriptions section for a detailed explanation of each
program and its output, and the MUMmer examples webpage for a brief walk-through of each major
module with full input data and expected outputs.

4.1. Aligning two finished sequences

The most basic use case is the alignment of two contiguous sequences. For all of the one vs. one use cases
the mummer program alone, when coupled with mummerplot, may be all that is necessary to visualize a global
alignment of the two sequences. This process alone can be very helpful in determining the large scale
differences between the two sequences. For a single reference sequence ref.fasta and a single query

sequence gry.fasta in FastA format, type:

mummer -mum -b -c ref.fasta qry.fasta > ref gry.mums

mummerplot --postscript --prefix=ref gry ref gry.mums

gnuplot ref gry.gp

Then view or print the postscript plot ref gry.ps in whatever manner you wish.

4.1.1. Highly similar sequences without rearrangements

When comparing two near identical sequences, the object of the alignment is usually SNP and small indel
identification. The original MUMmer1.0 pipeline still proves to be a handy tool for this type of analysis,
although run-mummer3 with combineMuMs -D can prove to be even handier. Its LIS clustering algorithm and
reliance on unique matches give it some reliability advantages over the newer pipelines. For a single
reference sequence ref.fasta and a single query sequence gry.fasta in FastA format, type:

run-mummerl ref.fasta gry.fasta ref gry

or for sequences that match on the reverse strand

run-mummerl ref.fasta qry.fasta ref qgry -r

SNP detection and one-to-one global alignment can also be performed by nucmer as described in the SNP

detection walkthrough. The NUCmer pipeline provides a more user-friendly method for SNP detection
while sacrificing a small degree of sensitivity.

4.1.2. Highly similar sequences with rearrangements

Often two sequences are highly similar, but large chunks of the sequence are rearranged, inverted and
inserted. In order to align these and produce an output that is similar to the MUMmer1.0 pipeline, use
run-mummer3. It uses a clustering method that allows for these types of large scale mutations, but retains
many of the other features of run-mummer1. To hunt for SNPs more accurately, you can edit the script and
add the -D option to the combineMuMs command line, thus producing a concise file of only the difference
positions between the two sequences. For a single reference sequence ref.fasta and a single query
sequence gry.fasta in FastA format, type:

run-mummer3 ref.fasta qry.fasta ref gry
SNP detection and one-to-one local alignment can also be performed by nucmer as described in the SNP

detection walkthrough. The NUCmer pipeline provides a more user-friendly method for SNP detection
while sacrificing a small degree of sensitivity.

4.1.3. Fairly similar sequences

While run-mummer1 and run-mummer3 focus more on what is different between two sequences, nucmer
focuses on what is the same. It has very few restrictions on what it will align, so rearrangements,
inversions and repeats will all be identified by nucmer. For a single reference sequence ref.fasta and a
single query sequence qry.fasta in FastA format, type:

nucmer --maxgap=500 --mincluster=100 --prefix=ref gqry ref.fasta qry.fasta

show-coords -r ref gry.delta > ref gry.coords

show-aligns ref gry.delta refname gryname > ref gry.aligns

Where refname and gryname are the FastA IDs of the two sequences. The output of NUCmer can often be
voluminous and is best visualized with mummerplot. In addition, its output can be filtered in a varity of
ways with the delta-filter program. For example, to select and display a one-to-one local mapping of
reference to query sequences, use:

delta-filter -q -r ref gry.delta > ref gry.filter

mummerplot ref gry.filter -R ref.fasta -0 gry.fasta

This will first filter the delta file, selecting only those alignments which comprise the one-to-one mapping
between reference and query, and then display a dotplot of the selected alignments. Note that NUCmer

allows for multiple reference and query sequences, so the above methods will also work for such and
input. See the delta-filter and mummerplot sections for more details.

4.1.4. Fairly dissimilar sequences

Sometimes two sequences exhibit poor similarity on the DNA level, but their protein sequences are
conserved. In this case, promer will be the most useful MUMmer tool, since it translates the DNA input
sequences into amino acids before proceeding with the alignment. For a single DNA reference sequence
ref.fasta and a single DNA query sequence gry.fasta in FastA format, type:

promer --prefix=ref qry ref.fasta qry.fasta
show-coords -r ref gry.delta > ref gry.coords
show-aligns -r ref gry.delta refname gryname > ref gry.aligns

Where refname and gryname are the FastA IDs of the two sequences. Note that the -k option can be added
to show-coords to reduce the amount of output by only displaying the best frame in situations where the
same hit is represented in multiple, overlapping frames. The output of PROmer can often be voluminous
and is best visualized with mummerplot. In addition, its output can be filtered in a varity of ways with the
delta-filter program. For example, to select and display a one-to-one local mapping of reference to
query sequences, use:

delta-filter -q -r ref gry.delta > ref gry.filter

mummerplot ref gry.filter -R ref.fasta -Q qry.fasta

This will first filter the delta file, selecting only those alignments which comprise the one-to-one mapping
between reference and query, and then display a dotplot of the selected alignments. Note that PROmer

allows for multiple reference and query sequences, so the above methods will also work for such an input.
See the delta-filter and mummerplot sections for more details.

4.2. Aligning two draft sequences

Many times it is necessary to align two genomes that have not yet been completed, or two genomes with
multiple chromosomes. This can make things a little more complicated, since a separate alignment would
have to be generated for each possible pairing of the sequences. However, both NUCmer and PROmer
automate this process and accept multi-FastA inputs, thus simplifying the process of aligning two sets of
contigs, scaffolds or chromosomes. Since NUCmer and PROmer have an almost identical user interface,
this use case will only be explained using nucmer. If the two inputs are too divergent for nucmer to align,
simply use promer instead. For two sets of contigs, ref.fasta and qry. fasta, type:

nucmer --prefix=ref qry ref.fasta gry.fasta
show-coords -rcl ref gry.delta > ref gry.coords

show-aligns ref gry.delta refname gryname > ref gry.aligns

Where refname and gryname are the FastA IDs of two contigs. The show-aligns step will have to be
repeated for every combination of contigs that the user wishes to analyze. Because the output of the
all-vs-all comparison described above can be immense, it is often essential to filter the resulting alignment
data with the delta-filter program. To map each reference to a position in the query, use delta-filter
-r. To map each query to a position in the reference, use delta-filter -g. To determine a one-to-one
mapping of each reference and query, combine the options and use delta-filter -r -g. Also, the
mummerplot utility provides a very handy visualization method for viewing contig mappings, type:

mummerplot ref gry.delta -R ref.fasta -Q gry.fasta --filter --layout
This will generate a plot displaying the one-to-one mapping between the two contig sets. When plotted to

an X11 terminal, the plot is zoom-able and browse-able via the mouse and keyboard commands provided
by gnuplot 4.0. See the delta-filter and mummerplot sections for more details.

4.3. Mapping a draft sequence to a finished sequence

There are many benefits of mapping a draft sequence to the finished sequence of a related organism.
Determining the location and orientation of each query contig as it maps to the finished reference
sequence can significantly speed up the closure process of the draft sequence, and by examining the areas
of conservation, the annotation of the draft sequence can be improved and refined. Since NUCmer and
PROmer have an almost identical user interface, this use case will only be explained using nucmer. If the
two inputs are to divergent for nucmer, simply use promer instead. For a finished reference chromosome(s)
ref.fasta and a set of near identical contigs qry. fasta, type:

nucmer --prefix=ref qry ref.fasta gry.fasta

show-coords -rcl ref gry.delta > ref gry.coords
show-aligns ref gry.delta refname gryname > ref gry.aligns
show-tiling ref gry.delta > ref gry.tiling

Where refname and gryname are the FastA IDs of two sequences. The show-aligns step will have to be
repeated for every combination of sequences that the user wishes to analyze. If mapping the draft
sequences to each of their repeat locations is not required, the delta-filter program can quickly select the
optimal placement of each draft sequence to the reference using the following:

delta-filter -q ref gry.delta > ref gry.filter

The newly created delta file ref_gry.filter can then be substituted for the original in the above
procedures in order to generate slimmed down versions of the output.

4.4. SNP detection

Joining a couple of the MUMmer components together can form a quite reliable SNP detection pipeline.
MUMmer can perform all steps of this pipeline from aligning the sequences, to selecting the one-to-one
mapping, and finally calling the SNP positions. The user can then process these SNP positions to assign
quality scores based on the underlying traces and surrounding context. Such methods have been
successfully applied to various SNP studies for organisms including Bacillus anthracis and Yersinia pestis.
Of important note, a SNP pipeline built with nucmer allows for the identification of SNPs between two
genomes with many rearrangements. The Yersinia pestis strains, for example, demonstrate significant
genome "shuffling", and make SNP detection difficult with global alignment programs such as
run-mummerl. However, a pipeline built with nucmer (like shown below) is capable of finding all of the
SNPs between two genomes, regardless of their structural similarity.

To find a reliable set of SNPs between to highly similar multi-FastA sequence sets ref. fasta and
gry.fasta, type

nucmer --prefix=ref qry ref.fasta gry.fasta
show-snps -Clr ref gry.delta > ref gry.snps

The -c option in show-snps assures that only SNPs found in uniquely aligned sequence will be reported,
thus excluding SNPs contained in repeats. An alternative method which first attempts to determine the
"correct" repeat copy is:

nucmer --prefix=ref qry ref.fasta gry.fasta
delta-filter -r -q ref gry.delta > ref gry.filter
show-snps -Clr ref gry.filter > ref gry.snps

Now, conflicting repeat copies will first be eliminated with delta-filter and the SNPs will be re-called in
hopes of finding some that were previously masked by another repeat copy.

4.5. Identifying repeats

Although MUMmer was not specifically designed to identify repeats, it does has a few methods of
identifying exact and exact tandem repeats. In addition to these methods, the nucmer alignment script can
be used to align a sequence (or set of sequences) to itself. By ignoring all of the hits that have the same
coordinates in both inputs, one can generate a list of inexact repeats. When using this method of repeat
detection, be sure to set the --maxmatch and --nosimplify options to ensure the correct results.

To find large inexact repeats in a set of sequences seq. fasta, type the following and ignore all hits with
the same start coordinate in each copy of the sequence:

nucmer --maxmatch --nosimplify --prefix=seq seq seq.fasta seq.fasta

show-coords -r seq_seqg.delta > seq_ seq.coords

To find exact repeats of length 50 or greater in a single sequence seq.fasta, type:
repeat-match -n 50 seq.fasta > seq.repeats

To find exact tandem repeats of length 50 or greater in a single sequence seq.fasta, type:

exact-tandems seq.fasta 50 > seq.tandems

5. Program descriptions

The most commonly used MUMmer pipelines (nucmer, promer, run-mummerl and run-mummer3) are
comprised of three main sections. The first section identifies a certain subset of maximal exact matches
between the two inputs, the second section clusters these matches into groups that will likely make good
alignment anchors, and the third and final section extends alignments between these clustered matches to
produce the final gapped alignment. These three sections also outline the primary types of programs
included in the MUMmer package - the Maximal exact matching section describes the programs that
compute different types maximal exact matches, the Clustering section describes the two different types of
clustering algorithms, and Alignment generators describes the scripts that combine matching, clustering
and extending in order to produce high scoring pair-wise alignments. Finally, the Utilities section reviews
a few of the tools that have been developed for interpreting and displaying the output of the MUMmer
alignment routines.

It is noteworthy to point out the simplicity of improving the current MUMmer pipeline. For instance, if a
different and/or better clustering algorithm was needed for a certain application, a program could be

written in any language and inserted into the pipeline. So long as the program was able to read the
appropriate input and produce output that mimics the existing module, it could be swapped for the
existing module with a single edit to the calling script. NUCmer for example is a Perl script that invokes
various MUMmer routines. If you were to develop a new clustering algorithm called mygaps you could
edit the line in NUCmer that defines the location of mgaps to instead define the location of mygaps. It's that
easy, as long as mygaps had the same input and output mgaps the transition would be seamless.

S.1. Maximal exact matching

The heart of the MUMmer package is its suffix tree based maximal matching routines. These can be used
for repeat detection within a single sequence as is done by repeat-match and exact-tandems, or can be used
for the alignment of two or more sequences as is done by mummer. Most every other program in the
MUMmer packages builds off of the output of the mummer maximal exact matcher, so it is of great
importance to first understand the workings of this program.

5.1.1. mummer

mummer is a suffix tree algorithm designed to find maximal exact matches of some minimum length
between two input sequences. MUMmer's namesake program originally stood for Maximal Unique
Matcher, however in subsequent versions the meaning of unique has been skewed. The original version
(1.0) required all maximal matches to be unique in both the reference and the query sequence (MUMs);
the second version (2.0) required uniqueness only in the reference sequence (MUM-candidates); and the
current version (3.0) can ignore uniqueness completely, however it defaults to finding MUM-candidates
and can be switched on the command line. To restate, by default mummer will only find maximal matches
that are unique in the entire set of reference sequences. The match lists produced by mummer can be used
alone to generate alignment dot plots, or can be passed on to the clustering algorithms for the
identification of longer non-exact regions of conservation. These match lists have great versatility because
they contain huge amounts of information and can be passed forward to other interpretation programs for
clustering, analysis, searching, etc.

mummer achieves its high performance by using a very efficient data structure known as a suffix tree. This
data structure can be both constructed and searched in linear time, making it ideal for large scale pattern
matching. To save memory, only the reference sequence(s) is used to construct the suffix tree and the
query sequences are then streamed through the data structure while all of the maximal exact matches are
extracted and displayed to the user. Because only the reference sequence is loaded into memory, the space
requirement for any particular mummer run is only dependent on the size of the reference sequence.
Therefore, if you have a reasonably sized sequence set that you want to match against an enormous set of
sequences, it is wise to make the smaller file the reference to assure the process will not exhaust your
computer's memory resources. The query files are loaded into memory one at a time, so for an enormous
query that will require a significant amount of memory just to load the character string, it is helpful to
partition the query into multiple smaller files using the syntax described below.

Command line syntax

mummer [options] <reference file> <query filel> . . . [query file32]
There must be exactly one reference file and at least one query file. Both the reference and query files
should be in multi-FastA format and may contain any set of upper and lowercase characters, thus DNA

and protein sequences are both allowed and matching is case insensitive. The maximum number of query
files is 32, but there is no limit on how many sequences each reference or query file may contain.

Program options

—mum Compute MUMs, i.e. matches that are unique in both the reference and query

-mumreference Compute MUM-candidates, i.e. matches that are unique in the reference but not
necessarily in the query

-maxmatch Compute all maximal matches regardless of their uniqueness

-n Only match the characters a, ¢, g, or t (case insensitive)

-1 int Minimum match length (default 20)

-b Compute both forward and reverse complement matches

-r Only compute reverse complement matches

-s Show the matching substring in the output

-C Report the query position of a reverse complement match relative to the forward

strand of the query sequence

-F Force 4 column output format that prepends every match line with the reference
sequence identifier

-L Show the length of the query sequence on the header line

-help Show the possible options and exit

Option grouping is not allowed, therefore each option should be separated by a space. The options -mum,
-mumreference, and -maxmatch cannot be combined, and if neither is used, then the program will default to
-mumreference. For a string to be unique in the reference, it must occur only once in the concatenation of
all the reference superstrings, but for string to be unique in the query it need only be unique in its own
superstring. Setting either the -mum or -mumreference option can significantly cut down on the number of
repeat induced matches as opposed to -maxmatch, and is recommended for most all applications. Also,
setting the -1 option any lower than around 15 can significantly increase the number of spurious matches
and therefore balloon the runtime. When dealing with masked DNA sequence, use the -n option to avoid
matching the masking characters. Options -b and -r exclude each other, and if neither is used then only
forward matches will be reported. All reverse complementing will affect only the query sequences. Option
-c can only be used in combination with -b or -r, as it would have no relevance without these options.
The -F option is useful for forcing mummer to output a consistent format regardless of the number of input
sequences.

For those familiar with the previous versions of MUMmer, the -mum option mimics the functionality of
MUMmer1.0; the -mumreference option mimics the functionality of MUMmer2.0; and the -maxmatch
option mimics the functionality of the max-match program included with MUMmer2.0. The default
behavior of the current version is -mumreference because it is a good balance between finding all matches
and only unique matches.

Output format

Output formatting varies depending on the command line parameters used. Program diagnostic
information is always output to stderr while the match lists are output to stdout. This allows for the match
output to be redirected into a file, which is quite useful since the output is generally quite large. The
standard output format that results from running mummer on a single reference sequence with the -b option
is as follows:

> ID1

4655667 1 31
4655699 33 319
4656019 353 520
4656540 874 20
> ID1 Reverse
741743 22 872
> ID2
4655520 1 498
4656019 500 274
4656317 798 39
4656376 855 29
> ID2 Reverse
> ID3
> ID3 Reverse
4655178 27 840
4656019 868 171
(output continues ...)

For each query sequence, the corresponding ID tag is reported on each line beginning with a '>' symbol,
even if there are no matches corresponding to this sequence. Reverse complemented matches follow a
query header that has the keyword rReverse following the sequence tag, thus creating two headers for each
query sequence and alternating forward and reverse match lists. For each match, the three columns list the
position in the reference sequence, the position in the query sequence, and the length of the match
respectively. Reverse complemented query positions are reported relative to the reverse of the query
sequence unless the -c option was used. As was stated above the -1 option adds the sequence lengths to the
header line and the -s option adds the match strings to the output, if these options were used the format
would be as follows:

> ID1 Len = 893

4655667 1 31
ctgacgacaaccatgcaccacctgtcactct
4655699 33 319
ctcccgaaggagaagccctatctctagggttgtcagaggatgtcaagacctgg .
4656019 353 520
gttcctccatatctctacgcatttcaccgctacacatggaattccactttect .
4656540 874 20
tttcgaaccatgcggttcaa
> ID1 Reverse Len = 893
741743 22 872

tgaaaggcggcttcggctgtcacttatggatggacccgegtecgcattagetag .
> ID2 Len = 884

4655520 1 498
tcataaggggcatgatgatttgacgtcatccccaccttecteecggtttgtecac .«
4656019 500 274
gttcctccatatctctacgecatttcaccgctacacatggaattccactttect .
4656317 798 39
aagccttcatcactcacgcggegttgecteccgtcagactt

4656376 855 29

cctactgctgectecececgtaggagtectggg
> ID2 Reverse Len = 884

> ID3 Len = 1039

> ID3 Reverse Len = 1039

4655178 27 840
atcaattctccatagaaaggaggtgatccagccgcacctteccgatacggectac .
4656019 868 171

gttcctccatatctctacgcatttcaccgectacacatggaattccactttect .

(output continues ...)

Where the length of each query is noted after the Len keyword and the match string is listed on the line
after its match coordinates. Note that the ellipsis marks are not part of the actual output, but added to fit
the output into the webpage. Finally, when dealing with multiple reference sequences (or the -F option), it
is necessary to output the ID of the reference sequence. This is placed at the beginning of each match line,
creating an four column output format as follows:

> ID1
220594 479 1 728
> ID1 Reverse
220716 3527 1 20
220716 3548 22 840
> ID2
> ID2 Reverse
219093 13 401 484
220716 3682 2 29
220716 3731 49 39
220716 3794 112 693
> ID3
219093 13 188 721
220716 3897 2 590
220716 4488 593 423
> ID3 Reverse
220594 1 38 509
(output continues ...)

5.1.2. repeat-match

repeat-match is a suffix tree algorithm designed to find maximal exact repeats within a single input
sequence. It uses a similar algorithm to mummer, but altered slightly to find maximal exact matches within a
single sequence.

Command line syntax

repeat-match [options] <sequence file>
The sequence file should contain only one sequence in FastA format, however if multiple sequences exist

the first one will be used. The sequence may contain any set of upper and lowercase characters, thus DNA
and protein sequences are both allowed and matching is case insensitive.

Program options

-f Use the forward strand only
-n int Minimum match length (default 20)
-t Only output tandem repeats

The program will report both forward and reverse complement repeats by default unless the -£ option is
used. While the -t option identifies tandem repeats, the exact-tandems script is a wrapper for repeat-match
and does a more graceful job of reporting the tandem repeats.

Output format

Output formatting varies depending on the command line parameters. Program diagnostic information is
always output to stderr while the match lists are output to stdout. This allows for the match output to be
redirected into a file, which is quite useful since the output can be quite large. The standard output format
that results from running repeat-match with default parameters is as follows:

Long Exact Matches:

Startl Start2 Length
4919485 4919506r 22
4997298 4997319r 22
4919485 4997298 22
3461866 3751066 53

537897 4650529r 76

(output continues ...)

The three columns are the first position of the repeat, the second position of the repeat, and the length of
the repeat respectively. Reverse complement repeat positions are denoted by an 'r' following the Start2
position, and are relative to the forward strand of the sequence.

5.1.3. exact-tandems

exact-tandems is a wrapper cshell script for the repeat-match program. It provides a list of exact tandem
repeats within a single input sequence.

Command line syntax

exact-tandems <sequence file> <min length>

As with repeat-match the sequence file should contain only one sequence in FastA format, however if
multiple sequences exist the first one will be used. The sequence may contain any set of upper and
lowercase characters, thus DNA and protein sequence are both allowed and matching is case insensitive.
The minimum match length parameter should be a positive integer, this value will be passed to the
repeat-match program via the -n option.

Output format

Program diagnostic information is always output to stderr while the match lists are output to stdout. This
allows for the match output to be redirected into a file, which is quite useful since the output can be quite
large. The output format of exact-tandems is as follows:

Finding matches
Tandem repeats

Start Extent UnitLen Copies
416173 150 45 3.3
554810 102 42 2.4
554943 109 42 2.6
880346 191 63 3.0
880370 62 21 3.0

(output continues ...)

The four columns are the first position of the tandem, the extent of the repeat region, the length of each
tandem repeat unit, and the number of repeat units respectively.

5.2. Clustering

MUMmer's clustering algorithms attempt to order small individual matches into larger match clusters in
order to make the output of mummer more intelligible. A dot plot makes it easy to spot alignment regions
from a match list, however when examining the data without graphic aids, it is very difficult to draw any
reasonable conclusions from the simple flat file list of matches. Clustering the matches together into larger
groups of neighboring matches makes this process much easier by ordering the data and removing
spurious matches.

5.2.1. gaps

gaps is the primary clustering algorithm for run-mummer1, and although classified as a "clustering" step,
gaps is more of a sorting routine. It implements the LIS (longest increasing subset) algorithm to extract the
longest consistent set of matches between two sequences, and generates a single cluster that represents the
best "straight-line" arrangement of matches between the sequences. By straight-line, we mean no
rearrangements or inversions, just a simple path of agreeing matches between the two sequences. This
limits the usability of this program to the alignment of genomes that are very similar and with no large
scale mutations. To further illustrate the purpose of this program, consider the following set of MUMs
(illustrated as line connecting two rectangles) between two sequences:

]

—] == —

— []] —

The rectangles connected by lines are maximal exact matches between two sequences, however only the
red rectangles would be included in the LIS because they form the longest increasing subset of matches,
i.e. the longest subset of matches that are consistently ordered in both genomes. Note that the empty
rectangles will be discarded, even though they probably represent a major rearrangement between the two
sequences. Because of this limitation gaps is best suited for the comparison of near identical sequences
with the goal of finding minor mutations like SNPs and small indels.

Command line syntax

mummer [params] | tail +2 | gaps <reference file> [-r]

or
gaps <reference file> [-r] < <match list>

Because gaps receives its input from stdin, the input can either be piped directly from filtered mummer
output, or redirected as input from a file. The strange syntax is a result of a legacy issue described in the
Known problems section, and requires the header be stripped from the mummer output. In addition, gaps is
only designed to handle a single reference and a single query sequence, thus the preceding mummer run
must also follow this constraint. The -r is optional and designates the incoming matches as reverse
complement matches which must reference the reverse complement of the sequence, therefore forcing
mummer to be run without the -c option. Please refer to the run-mummer1 script for an example of how to use
this program in an alignment pipeline. A rewrite of this algorithm to handle multiple reference and/or
query sequences may eventually appear, but is not currently in development.

Output format

The stdout output of gaps shares much in common with the standard three column match output, with the
addition of three extra columns:

> /home/aphillip/data/GHP.lcon Consistent matches

183 17 22 none - -
238 72 108 none 33 33
347 181 92 none 1 1
458 292 50 none 19 19
705 539 44 none 1 1
750 584 38 none 1 1
807 641 23 -16 0
(output continues ...)
> Wrap around
334398 329917 47 none - 225
334446 329965 62 none 1 1
334539 330058 20 none 31 31
334560 330079 92 none 1 1
334653 330172 77 none 1 1
334740 330259 41 none 10 10

(output continues ...)
> /home/aphillip/data/GHP.lcon Other matches

1317231 4891 21 none - -
1317275 4927 21 none - -
1317804 5399 25 none 508 451
947580 5436 36 none - -

23406 5518 34 none - -
333079 6592 32 none - -

(output continues ...)

Where the first line is the location of the reference file, and the first three columns are the same as the
three column match format described in the mummer section. The final three columns are the overlap
between this match and the previous match, the gap between the start of this match and the end of the
previous match in the reference, and the gap between the start of this match and the end of the previous
match in the query respectively. A couple suggestions on how to visually scan through this output: a gap
size == 1 means a single mismatch between the two sequences, e.g. a SNP, an overlap like seen in the last
line of the consistent matches indicates the existence of a tandem repeat, and a '-' character means that
the gap size could not be calculated. The wrap around list is for circular genomes where the consistent set
of matches wraps around the origin of the reference, and the other matches list shows the matches that
were not included in the LIS (like the white boxes in the above image). Finally, if the -r was passed on the
command line the Consistent matches and other matches headers would contain the reverse keyword
after the reference file.

5.2.2. mgaps

mgaps was introduced into the MUMmer pipeline in an effort to better handle large-scale rearrangements
and duplications. Unlike gaps, mgaps is a full clustering algorithm that is capable of generating multiple
groups of consistently ordered matches. Clustering is controlled by a set of command-line parameters that
adjust the minimum cluster size, maximum gap between matches, etc. Only matches that were included in
clusters will appear in the output, so by adjusting the command-line parameters it is possible to filter out
many of the spurious matches, thus leaving only the larger areas of conservation between the input
sequences. The major advantage of mgaps is its ability to identify these "islands" of conservation. This
frees the user from the single LIS restraints of the gaps program and allows for the identification of
large-scale rearrangements, duplications, gene families and so on. To further illustrate the purpose of this
program, consider once again the following set of MUMs (illustrated as line connecting two rectangles)
between two sequences:

Loss L

Just like before the rectangles connected by lines are maximal exact matches between two sequences, with
each distinct cluster having its own unique color. In the previous demonstration using this MUM set, gaps
failed to identify the blue cluster because it was not consistent with the LIS. However, by using mgaps, all
regions of conservation have now been identified. The only fallback being the increased complexity of
the output, where you once had only one cluster for the whole comparison, you now have four. Because
of this, it can sometimes be difficult separating the repetitive clusters from "correct" clusters, making mgaps
more suited for global alignments instead of localized error detection.

Command line syntax

mummer [params] | mgaps [options]
or
mgaps < <match list>

Because gaps receives its input from stdin, the input can either be piped directly from raw mummer output,
or redirected as input from a mummer output file. mgaps is only designed to handle a single reference and
one or more query sequences, thus the preceding mummer run must also follow this constraint. Please refer
to the run-mummer3 script for an example of how to use this program in an alignment pipeline. Note that in
order to cluster reverse complement matches, the reverse complement matches must reference the reverse
complement strand of the query sequence, therefore forcing mummer to be run without the -c option. A
rewrite of this algorithm to handle multiple reference sequences and a better coordinate system (forward
coordinates for reverse complement matches) is doubtful but may eventually appear.

Program options

-C Check that input header labels alternately have the "Reverse" keyword
-d int Maximum fixed diagonal difference (default 5)
-e Use extent of cluster (end - start) rather than the sum of the match lengths to

determine cluster length
-f float Maximum fraction of separation for diagonal difference (default 0.05)

-1 int Minimum cluster length (default 200)

-s int Maximum separation between adjacent matches in a cluster (default 1000)

The -d option can be interpreted as the number of insertions allowed between two matches in the same
cluster, while the - option is a fraction equal to (diagonal difference / match separation) where a higher
value will increase the indel tolerance. Minimum cluster length is the sum of the contained matches unless
the -e option is used. The best way to get a feel for what each parameter controls is to cluster the same
data set numerous times with different values and observe the resulting differences. It can also be helpful
to set these parameters to the size of the element you wish to capture, i.e. set the minimum cluster size to
say the smallest exon you expect and set the max gap to the smallest intron you expect to obtain clusters

that could represent single exons (depending of course of the similarity of the two sequences).
Output format

The stdout output of mgaps shares much in common with the output of mummer and gaps, with a slightly

different header formatting than gaps to allow for multiple query sequences and multiple clusters. The
output of mgaps run on both forward and reverse complement matches is as follows:

> ID41
> ID41 Reverse
5177399 1 232 none - -
5177632 234 6794 none
5184433 7035 24 none 7
5184468 7069 23 none 11 10
> ID42
10181 43 1521 none - -
> ID42 Reverse
4654536 17 36 none -
4654578 57 298 none 6
4654877 356 226 none 1 1
#
4655139 845 28 none - -
4655178 884 694 none 11 11
4655873 1579 20 none 1 1
#
4850044 17 1492 none - -
4851537 1510 711 none 1
4852249 2222 42 none 1 1

(output continues ...)

Headers containing the ID for each query sequence are listed after the '>"' characters, and a following
Reverse keyword identifies the reverse matches for that query sequence. Individual clusters for each
sequence are separated by a '#' character, and the six columns are exactly the same as the gaps output (see
the gaps section for more details).

5.3. Alignment generators

The alignment scripts described in this section build upon the data generated by the previous two sections,
maximal exact matching and clustering. Each of these scripts independently runs the matching and
clustering steps, and then generates pair-wise alignments for each of the clusters. This translates to a basic
seed and extend method of alignment. The individual matches within each cluster are used as alignment
anchors and only the mismatching sequence between the matches is processed by the Smith-Waterman
dynamic programming routine. This reduces both the time and memory necessary to align large
sequences, while still producing accurate alignments.

5.3.1. NUCmer

NUCmer (NUCleotide MUMmer) is the most user-friendly alignment script for standard DNA sequence
alignment. It is a robust pipeline that allows for multiple reference and multiple query sequences to be
aligned in a many vs. many fashion. For instance, a very common use for nucmer is to determine the
position and orientation of a set of sequence contigs in relation to a finished sequence, however it can be
just as effective in comparing two finished sequences to one another. Like all of the other alignment
scripts, it is a three step process - maximal exact matching, match clustering, and alignment extension. It
begins by using mummer to find all of the maximal unique matches of a given length between the two input
sequences. Following the matching phase, individual matches are clustered into closely grouped sets with
mgaps. Finally, the non-exact sequence between matches is aligned via a modified Smith-Waterman

algorithm, and the clusters themselves are extended outwards in order to increase the overall coverage of
the alignments. nucmer uses the mgaps clustering routine which allows for rearrangements, duplications and
inversions; as a consequence, nucmer is best suited for large-scale global alignments, as is shown in the
following plot:

1 B+
1. de0G

1. 20408

Helocbacter_oylor_strarm_J53

o
o SCO000 ACDDOD BODOOO BO0D00 Te+lE 1.2e+DS 140408 16e+06
Holicobader_pyion 26835

This dot plot represents a nucmer alignment of two different strains of Helicobacter pylori (26695 on the
x-axis and J99 on the y-axis). Forward matches are shown in red, while reverse matches are shown in
green. This alignment, which took only 12 seconds to compute, clearly shows a major inversion event
centered around the origin of replication, and demonstrates NUCmer's ability to handle large scale
rearrangements between sequences of high nucleotide similarity.

Command line syntax

nucmer [options] <reference file> <query file>

The reference and query files should both be in multi-FastA format and have no limit on the number of
sequences they man contain. However, because nucmer uses mummer for its maximal exact matching, the
memory usage will be dependent on the size of the reference file, so it may be advisable to make the
smaller of the input files the reference to assure the program does not exhaust your computer's memory
resources. In addition, masking the uninteresting regions of the input with any character other than a, c, g,
or ¢ will both speed up nucmer by reducing the number of possible matches and also cut down on the
number of alignments induced by repetitive sequence.

Program options

——mum Use anchor matches that are unique in both the reference and query

—-mumreference Use anchor matches that are unique in the reference but not necessarily unique
in the query (default behavior)

—-maxmatch Use all anchor matches regardless of their uniqueness

-b int Distance an alignment extension will attempt to extend poor scoring regions
—-breaklen before giving up (default 200)

-c int Minimum cluster length (default 65)

—-mincluster

—--[noldelta

Toggle the creation of the delta file. Setting --nodelta prevents the
alignment extension step and only outputs the match clusters (default --delta)

——depend Print the dependency information and exit
-d float Maximum diagonal difference factor for clustering, i.e. diagonal difference /
—-diagfactor match separation (default 0.12)

——[noJ]extend

Toggle the outward extension of alignments from their anchoring clusters.
Setting --noextend will prevent alignment extensions but still align the DNA
between clustered matches and create the .delta file (default —--extend)

-f Align only the forward strands of each sequence

—--forward

-g int Maximum gap between two adjacent matches in a cluster (default 90)
—--maxgap

-h Print the help information and exit

—-help

-1 int Minimum length of an maximal exact match (default 20)

—--minmatch

-0 Automatically generate the <prefix>.coords file using the 'show-coords'
——coords program with the -r option

--[noJ]optimize

Toggle alignment score optimization. Setting --nooptimize will prevent
alignment score optimization and result in sometimes longer, but lower scoring
alignments (default --optimize)

-p string Set the output file prefix (default out)

--prefix

-r Align only the reverse strand of the query sequence to the forward strand of
—-reverse the reference

--[no]simplify

-V
—-version

Simplify alignments by removing shadowed clusters. Turn this option off if
aligning a sequence to itself to look for repeats (default --simplify)

Print the version information and exit

All values are measured in DNA bases unless otherwise noted. Using either the -mum or -mumreference
options (along with masking the input sequences) can help reduce the number of repeat induced
alignments, and is suggested for most applications. If no uniqueness options are set, the program will
default to -mumreference. Decreasing the values of the -mincluster and --minmatch options will increase
the sensitivity of the alignment but may produce less reliable alignments. In addition, significantly raising
the value of the --maxgap value (say to 1000) can be crucial in producing alignments for more divergent
genomes. Setting --noextend speeds up the process by preventing alignment extensions outward from
each cluster, while --nodelta takes this a step further and doesn't even align the sequence between the

matches in a cluster, however both of these reduce the amount of information contained in the output. See
mgaps description for hints on setting the clustering parameters --mincluster, --diagdiff and --maxgap.
The --coords option exists only for NUCmer1.0 compatibility; instead, it is recommended to run
show-coords afterwards with more specific options. The --nooptimize option will force alignments within
--breaklen bases of the sequence end to extend all the way to the sequence end, regardless of the resulting
alignment score. The --prefix string should be unique in the output directory to prevent overwriting
pre-existing data. Finally, by default nucmer matches the forward and reverse strands of the query
sequences to the forward strand of the reference sequence unless the --forward or --reverse options were
used, and all output coordinates always reference the forward strand of their respective sequence. Only
use the --nosimplify option when aligning a sequence to itself in order to find inexact repeats.

Output format

Because nucmer and promer produce the same output files, this section will serve to explain the
<prefix>.cluster and <prefix>.delta for both programs (that we will refer to as the cluster and delta files
respectively). The cluster file contains a list of all the clustered maximal exact matches identified in the
"seed" phase of the pipeline, and the delta file contains an encoded representation of all the alignments
generated in the "extend" phase of the pipeline. The cluster file is a derivative of both the gaps and mgaps
output, while the delta file is a unique format for concise, machine representation of the pair-wise
alignments. Several tools described in the Utilities section were designed to interpret these files and extract
useful, human-readable information from them, however the full format description for both the cluster
and delta files is described below to aid developers.

The "cluster" file format

The "cluster" file contains a list of the match clusters that were generated during the clustering phase of the
NUCmer or PROmer pipeline. It is primarily a five column match list, with the exception of the headers to
be described later. For example, a few "match" rows could read:

168 2 30 - -
288 122 51 90 90
354 188 84 15 15

Where the columns are the start of the match in the reference, the start of the match in the query, the
length of the match, the gap between this match and the previous match in the reference, and the gap
between this match and the previous match in the query respectively. All coordinates reference the
forward strand of each sequence, regardless of match direction, and are always measured in DNA bases
regardless of alignment type (DNA or amino acid). Therefore, when running PROmer, all the numbers in
the length and gaps columns must be multiples of three. In addition, because the matches reference the
forward DNA strand forward match clusters will be sorted in ascending fashion while reverse match
clusters will be sorted in descending fashion.

Each individual cluster has a header formed from two digits in the set [-1, -2, -3, 1, 2, 3]. These two
digits represent the direction of the cluster (negative for reverse and positive for forward) and the frame
of the cluster in the reference and query sequences respectively (note that matches within the same cluster
must have a consistent reading frame). For NUCmer output, the header will always show a "1" for the
reference and a "-1" or "1" for the query, since only the query can be reverse complemented. However,
for PROmer output all 36 combinations of these two digits are valid headers. For instance, " -2 3" would
represent a cluster on the 2nd reading frame of the reversed reference sequence and on the 3rd reading
frame of the forward query sequence.

There are also three other types of headers. The first line of each cluster file lists the two original input
files separated by a space, while the second line of each cluster file lists the type of alignment data - either
"NUCMER" or "PROMER". Finally the third type of header lists two sequences and their sequence lengths
following a '>' character and separated by whitespace. Each of these sequence headers is unique, so all
clusters/matches between any two sequences will appear under a single header identifying those two

sequences. These sequence headers will only be present if there is at least one cluster between the two
sequences, otherwise the sequence header will be omitted from the file. Below is a short example of what a
cluster file might look like:

/home/username/reference.fasta /home/username/query.fasta

PROMER
>tagAl tagBl 1000 2000000
1 3
184 18 21 - -
223 57 123 18 18
3 2
168 2 30 - -
288 122 51 90 90
354 188 84 15 15
483 317 24 45 45
558 392 81 51 51
642 476 144 3 3
>tagA2 tagBl 2000000 2000000
-3 =2
1665663 1641799 18 - -
1665585 1641712 21 60 69
1665546 1641673 39 18 18

(output continues ...)
The "delta" file format

The "delta" file is an encoded representation of the all-vs-all alignment between the input sequences to
either the NUCmer or PROmer pipeline. It is the primary output of these alignment scripts and there are
various utilities described in section 5.4. that are designed to take the delta file as input, and output some
human-readable information to the user. Also, the delta-filter utility is designed to manipulate these files
and select desired alignments. The primary function of the delta file is to catalog the coordinates of each
alignment and note the distance between insertions and deletions contained in these alignments. By only
storing the location of each indel as an offset, disk space is efficiently utilized, and a potentially enormous
alignment can be stored in a relatively small space. The first two lines of the file are identical to the cluster
file. The first line lists the two original input files separated by a space, while the second line specifies the
alignment data type, either "NUCMER" or "PROMER". Every grouping of alignments have a unique header
specifying the two aligning sequences. Only sequences with shared alignments will have a header,
therefore, as in the cluster file, there can be no empty headers (i.e. those that have no alignments
following them). An example header might look like

>tagAl tagBl 500 20000000

Following this sequence header is the alignment data. Each alignment following also has a header that
describes the coordinates of the alignment and some error information. These coordinates are inclusive
and reference the forward strand of the DNA sequence, regardless of the alignment type (DNA or amino
acid). Thus, if the start coordinate is greater than the end coordinate, the alignment is on the reverse
strand. The four coordinates are the start and end in the reference and the start and end in the query
respectively. The three digits following the location coordinates are the number of errors (non-identities +
indels), similarity errors (non-positive match scores), and stop codons (does not apply to DNA alignments,
will be "0"). An example header might look like:

2631 3401 2464 3234 15 15 2

Notice that the start coordinate points to the first base in the first codon, and the end coordinate points to
the last base in the last codon. Therefore making (end - start + 1) % 3 = 0. This makes determining the
frame of the amino acid alignment a simple matter of determining the reading frame of the start

coordinate for the reference and query. Obviously, these calculations are not necessary when dealing with
vanilla DNA alignments.

Each of these alignment headers is followed by a string of signed digits, one per line, with the final line
before the next header equaling O (zero). Each digit represents the distance to the next insertion in the
reference (positive int) or deletion in the reference (negative int), as measured in DNA bases OR amino
acids depending on the alignment data type. For example, with the ProMER data type, the delta sequence
(1, -3, 4, 0) would represent an insertion at positions 1 and 7 in the translated reference sequence and
an insertion at position 3 in the translated query sequence. Or with letters:

A ABCDACBDCACS

B = BCCDACDCACS
Delta = (1, -3, 4, 0)
A = ABC.DACBDCACS

B = .BCCDAC.DCACS

Using this delta information, it is possible to re-generate the alignments calculated by nucmer or promer as
is done in the show-coords program. This allows various utilities to be crafted to process and analyze the
alignment data using a universal format. This also means the delta only needs to be created once, yet it can
be analyzed numerous times without ever having to rerun the costly alignment algorithm. Below is an
example of what a delta file might look like:

/home/username/reference.fasta /home/username/query.fasta
PROMER

>tagAl tagBl 3000000 2000000

1667803 1667078 1641506 1640769 14 7 2
-145

-3

-1

-40

0

1667804 1667079 1641507 1640770 10 5 3
-146

-1

-1

-34

0

>tagA2 tagB4 4000 3000

2631 3401 2464 3234 4 0 0

0

2608 3402 2456 3235 10 5 0

7

1
1
1
1
0
(output continues ...)

5.3.2. PROmer

PROmer (PROtein MUMmer) is a close relative to the NUCmer script. It follows the exact same steps as
NUCmer and even uses most of the same programs in its pipeline, with one exception - all matching and
alignment routines are performed on the six frame amino acid translation of the DNA input sequence.
This provides promer with a much higher sensitivity than nucmer because protein sequences tends to
diverge much slower than their underlying DNA sequence. Therefore, on the same input sequences,
promer may find many conserved regions that nucmer will not, simply because the DNA sequence is not as

highly conserved as the amino acid translation.

All of this is performed behind the scenes, as the input is still the raw DNA sequence and output
coordinates are still reported in reference to the DNA, so the two programs (nucmer and promer) exhibit
little difference in their interfaces and usability. Because of its greatly increased sensitivity, it is usually
best to use promer on those sequences that cannot be adequately compared by nucmer, because if run on
very similar sequences the promer output can be quite voluminous. This is because promer makes no effort
to distinguish between proteins and junk amino acid translations, therefore a single highly conserved gene
may have up to six alignments in promer output, one for each of the six amino acid reading frames, when
only the correct reading frame would be sufficient. This makes promer ideally suited for highly divergent
sequences that show little DNA sequence conservation, as is shown in the following two plots:

20405

1 Se+CH 1.58+08
W z
g z
E =
El =

g P B teds
i
g 3
o [

S000CO 500000

[a

] 200000 400000 ©000C0 EBOOODD fodDE 120e06 180408 160406 1.80e08 a Z00000 &00000 EOO0D0 GE00000 1oeDS 1.2p408 14a+0E 150405 1.Bo+DE
DRapiecOitul pyocenes Sireplaaieiug fryojens

These dot plots represent two comparisons of Streptococcus pyogenes (x-axis) and Streptococcus mutans
(y-axis), with forward matches colored red and reverse matches colored green. The graph generated with
nucmer output is on the left, while the graph generated with promer output is on the right (both run with
default parameters). It is clearly visible that promer has aligned the two genomes with a much greater
sensitivity, thus demonstrating the effectiveness of comparing two divergent genomes on the amino acid
level.

Command line syntax

promer [options] <reference file> <query file>

The reference and query files should both be in multi-FastA format and have no limit on the number of
sequences they man contain. However, because promer uses mummer for its maximal exact matching, the
memory usage will be dependent on the size of the reference file, so it may be advisable to make the
smaller of the input files the reference to assure the program does not exhaust your computer's memory
resources. In addition, masking the uninteresting regions of the input with »n or x will both speed up
promer by reducing the number of possible matches and also cut down on the number of alignments
induced by repetitive sequence.

Program options

——mum Use anchor matches that are unique in both the reference and query

—-mumreference Use anchor matches that are unique in the reference but not necessarily unique
in the query (default behavior)

—-maxmatch

Use all anchor matches regardless of their uniqueness

-b int Distance an alignment extension will attempt to extend poor scoring regions

—-breaklen before giving up (default 60)

-c int Minimum cluster length (default 20)

--mincluster

--[no]delta Toggle the creation of the delta file. Setting --nodelta prevents the
alignment extension step and only outputs the match clusters (default --delta)

——depend Print the dependency information and exit

-d float Maximum diagonal difference factor for clustering, i.e. diagonal difference /

—-diagfactor match separation (default 0.11)

——[noJextend

Toggle the outward extension of alignments from their anchoring clusters.
Setting --noextend will prevent alignment extensions but still align the DNA
between clustered matches and create the .delta file (default --extend)

-g int Maximum gap between two adjacent matches in a cluster (default 30)
—--maxgap

-h Print the help information and exit

—-help

-1 int Minimum length of an maximal exact match (default 6)

—--minmatch

-m int Maximum stop codon bookend masking length (default 8)

—-masklen

-0 Automatically generate the <prefix>.coords file using the 'show-coords'
—-—-coords program with the -r option

——[noJoptimize

Toggle alignment score optimization. Setting --nooptimize will prevent
alignment score optimization and result in sometimes longer, but lower scoring
alignments (default --optimize)

-p string Set the output file prefix (default out)

——prefix

-V Print the version information and exit

--version

-x type The alignment matrix type, 1 [BLOSUM 45], 2 [BLOSUM 62] or 3 [BLOSUM 80]
—-matrix (default 2)

All values are measured in amino acids unless otherwise noted. Refer to the NUCmer Program options
section for more information regarding their shared options. The --masklen value determines the number
of amino acids between stop codons that will be automatically masked by promer, e.g. if an amino acid

sequence were ...AAA*AAAA*ARA. .. and the --masklen value were greater than or equal to 4, the sequence
would be masked to read . ..aaa*xxxx*ARA. .. for the duration of the script. The --matrix option sets the
BLOSUM matrix for scoring mismatches in the amino acid sequence, where options 1 assumes greater
diversity between the two sequences and 3 assumes greater similarity between the two sequences.

Output format

Output files follow the same format as described in the NUCmer Output format section.

5.3.3. run-mummerl

run-mummerl is a legacy script from the original MUMmer1.0 release. It has been updated to utilize the new
suffix tree code of version 3.0, however all other programs called from this script are identical to the
original MUMmer release back in 1999. Even though it is an outdated program, it still has some
advantages over the newer alignment scripts (nucmer, promer, run-mummer3). Like all of the alignment
scripts, run-mummerl is a three step process - matching, clustering and extension. However, unlike the
newer alignment scripts, run-mummer1 uses the gaps program for its clustering step. The gaps program does
not allow for rearrangements like mgaps, instead if finds the single longest increasing subset of matches
across the full length of both sequences. This makes it well suited for SNP and small indel identification
between small (< 10 Mbp), very similar sequences with few to no rearrangements.

Command line syntax

run-mummerl <reference file> <query file> <prefix> [-r]

The reference and query files must both be in FastA format and contain only one sequence. Memory
usage will be dependent on the size of the reference sequence, so it may be advisable to make the smaller
of the input files the reference to assure the program does not exhaust your computer's memory resources.
run-mummerl uses a simplified scoring function that does not recognize masking characters, so it is not
recommended to perform any masking on the input sequences. The <prefix> value will be prefixed to the
names of the resulting output files. The -r is optional and tells the script to reverse complement the query
input sequence, thus all output coordinates will reference the reverse complement of the query. If the -r
option is omitted, all matching will be limited to the forward strand of each sequence; if it is included, all
matching will be limited to the forward strand of the reference and the reverse strand of the query.

Program options

There are no available command line options for run-mummer1. Instead, the user must directly edit the csh
script to alter the command line values passed to the individual pipeline programs. The only available
tweak is changing the minimum match length value for mummer, set with the -1 option within the script.
Decreasing this value may increase the sensitivity of the script, but may drastically increase the resulting
runtime.

Output format

There are four output files generated with each call of run-mummer1, and each of these files is prefixed with
the <prefix> value set on the command line. Each of these files will be referred to by its file extension
(out, gaps, errorsgaps, align), and are described below.

The "out" file format

The standard output of the mummer program with it's header information stripped, see the mummer output
section for more information. Just a simple three column list, noting the position and length of every
maximal exact match. Note that for reverse complement matches (produced with the -r option), the query

start positions will reference the reverse complement of the query input sequence.

The "gaps" file format

The standard output of the gaps program, see the gaps output section for more information.
The "errorsgaps" file format

An annotated version of the gaps format, with an extra column listing the number of errors counted in
each gap. This is perhaps the most useful output file produced by run-mummer1 as it is easy to parse and
identify SNPs, which appear as a '1' in the final column. A '-' character in the final column means the
alignment was too large to compute. Example slice from an errorsgaps file:

403382 356512 77 none 1 -
403466 356595 56 none 7 4
403542 356670 81 none 20 19 2
403626 356756 75 none 3 5 4

The "align" file format

The align file is difficult to parse, but contains some useful visual information. It intersperses the gaps
output file with the actual pair-wise alignment of each gap. Each alignment follows the listing of the two
involved matches and uses a '~ ' character to identify the non-identities. If an alignment was too large to
process in memory a tag reading "*** Too long **+*" will be listed in its place. Example align file:

> /home/aphillip/data/mgen.seq reverse Consistent matches
170273 729167 158 none 8 8
170433 729327 34 none 2 2
Errors = 2
T: gaaggtctttttgattgtaaag
S: Jgaaggtctttaagattgtaaag

170501 729395 155 none 34 34
Errors = 4
T: aagaatgactctagcaggcaatggctggagtttgactgtaccactttgaataag
S: aagaatgactttagcaggtaatggctagagtttgactgtaccattttgaataag

170659 729553 187 none 3 3
Errors = 2
T: tggaaactatcagtctagagtgt
S: tggaaactattaatctagagtgt

170856 729750 281 none 10 10
Errors = 2
tagctgtcggagcgatcecttecggtagtga

S: tagctgtcggggcgatcccctcecggtagtga

H

(output continues ...)

Each alignment region is padded with 10bp of the exact match surrounding it on either side.
5.3.4. run-mummer3

run-mummer3 is the simplest pipeline of the latest MUMmer3.0 programs. It runs the same matching and

clustering algorithm as nucmer and promer, however it uses a different extension technique and does not
perform the important pre- and post-processing steps of NUC/PROmer. Because of its simplistic form,
run-mummer3 can only handle a single reference sequence, but like run-mummer1 its error-focused output
makes it a handy tool for detecting SNPs and other small errors. The only major difference between
run-mummer3 and run-mummer1 is the new version's ability to handle multiple query sequences and its
tolerance of large rearrangements. This makes run-mummer3 well suited for error detection between highly
similar sequences that may have large rearrangements, inversions etc. Edit the script by adding the -p
option to the combineMuMs command line to output a format designed for SNP identification. Still,
run-mummer3 provides few advantages of the more user friendly nucmer program, and should be avoided
where possible.

Command line syntax

run-mummer3 <reference file> <query file> <prefix>

The reference and query files should both be FastA format. The reference file may only have a single
sequence, but there is no limit on the number of sequences the query file may contain. It is very important
that the reference file only contain one sequence, because the script will give you no indication something
went wrong and there will just be empty output files. run-mummer3 uses a simplified scoring function that
does not recognize masking characters, so it is not recommended to perform any masking on the input
sequences. The <prefix> value will be prefixed to the names of the resulting output files. Both forward
and reverse complement matches will be found by default; to change this behavior or change any
parameters, requires requires hand editing the script.

Program options

There are no available command line options for run-mummer3. Instead, the user must directly edit the csh
script to alter the command line values passed to the individual pipeline programs. Altering these
parameters is suggested for most applications, as the default values may not always produce the best
output. Parameter values may be added or changed for mummer, mgaps and combineMuMs. Run these
programs with the -help option for a list of available options, or refer to this manual for more information
on mummer Or mgaps. Note that the -c option cannot be used for mummer in this script, or mgaps will fail to
cluster the reverse complement matches.

Output format

Like run-mummer1, run-mummer3 produces four output files prefixed with the value set on the command line.
Each of these files will be referred to by its file extension (out, gaps, errorsgaps, align), and are described
below.

The "out" file format

Pure, unadulterated mummer output. See the mummer output section for more information. Just a simple
three column list, noting the position and length of every maximal exact match. Note that for reverse
complement matches, the query start positions will reference the reverse complement of the query input
sequence.

The "gaps" file format
The standard output of the mgaps program, see the mgaps output section for more information.
The "errorsgaps" file format

An annotated version of the gaps format, with an extra column listing the number of errors counted in

each gap. This is perhaps the most useful output file produced by run-mummer1 as it is easy to parse and
identify SNPs, which appear as a '1' in the final column. A '-' character in the final column means the
alignment was too large to compute. Example slice from an errorsgaps file:

403382 356512 77 none 1 1 -
403466 356595 56 none 7 6 4
403542 356670 81 none 20 19 2
403626 356756 75 none 3 5 4

The "align" file format

The align file is difficult to parse, but contains some useful visual information. It intersperses the mgaps
output file with the actual pair-wise alignment of each gap. Each alignment follows the listing of the two
involved matches and uses a '~ ' character to identify the non-identities and a '="' character to identify the
MUM portion. The gap alignment is also padded with 10bp of the exact match surrounding it on either
side. Example align file:

(... output continues)

> ID21
3944620 24 983 none - -
3945604 1008 22 none 1

Errors = 1
A: agactctttctttggttgatt
B: agactctttccttggttgatt

3945655 1059 26 none 29 29
Errors = 3
A: cttgcgattgtctttgcatttgtetttgtttetttttettcatgetget
B: cttgcgattggctttgcatttggctttgtttetttttectecatgetget

3945684 1088 29 none 3 3
Errors = 2
A: ttacttttttctc-cattatagta
B: ttactttttt-tctcattatagta

~ A

Region: 3944620 .. 3945743 24 .. 1146 8 / 1124 0.71%
> ID21 Reverse
> ID22
> ID22 Reverse
5183942 8 31 none - -
5183980 47 4221 none 7 8

Errors = 3
A: cccagaaaac-accacctccggccagta
B: cccagaaaaccaccactcccggccagta

5188202 4269 314 none 1 1
Errors = 1
A: tgcaccagaacgtaataatcc
B: tgcaccagaaagtaataatcc

Region: 5183942 .. 5188515 4578 .. 4 4 / 4575 0.09%
(output continues ...)

After each cluster, the align file prints a line beginning with the Region keyword that shows the start and
stop of the alignment in the reference and the start and stop of the alignment in the query respectively.
The query coordinates in the region line will reference the forward strand of the query, while the lines
taken from the gaps file will still reference the reverse strand of the query. The region line also shows and

error ratio and the error percentage.

5.4. Utilities

MUMmer includes a few utility programs intended to parse the delta encoded alignment files and output
their contents to the user. The majority of these programs will only operate on the delta file output of
NUCmer or PROmer, however the generalized visualization tool, mummerplot, will function on a variety of
input.

5.4.1. delta-filter

delta-filter is a utility program for the manipulation of the delta encoded alignment files output by the
NUCmer and PROmer pipelines. It takes a delta file as input and filters the information based on the
various command line switches, outputting only the desired alignments to stdout. Options to filter by
alignment length, identity, uniqueness and consistency are provided. Certain combinations of these
options can greatly reduce the number of unwanted alignments in the delta file, thus making the output of
programs such as show-coords more comprehendible.

Command line syntax

delta-filter [options] <delta file> > <filtered delta file>

The <delta file> may represent either NUCmer of PROmer data. The <filtered delta file> will be the
filtered down version of the input. Output will be to stdout. delta-filter run with no options is the
identity function.

Program options

-g Global alignment using length*identity weighted LIS (longest increasing subset). For
every reference-query pair, leave only the alignments which form the longest
mutually consistent set

-h Print the help information and exit
-i float Set the minimum alignment identity [0, 100], (default 0)
-1 int Set the minimum alignment length (default 0)

-q Query alignment using length*identity weighted LIS. For each query, leave only the
alignments which form the longest consistent set for the query

-r Reference alignment using length*identity weighted LIS. For each reference, leave
only the alignments which form the longest consistent set for the reference.

-u float Set the minimum alignment uniqueness, i.e. percent of the alignment matching to
unique reference AND query sequence [0, 100], (default 0)

-o float Set the maximum alignment overlap for -r and -g options as a percent of the
alignment length [0, 100], (default 75)

The -g option simulates the behavior of MUMmerl by performing a similar algorithm to determine the

longest mutually consistent set of matches, while the -r and -q option only require the match set to be
consistent with respect to either the reference or query respectively. The difference being, the -g option
does not allow for inversions, translocations, etc. while the -r and -g options do. However, none of these
options (-g -r -q) allow for the inclusion of multiple repeat copies. Use -g when aligning two sequences
which are globally consistent, use -r for determining the best mapping of a reference to a query
(one-to-many), use -q for determining the best mapping of a query to a reference (many-to-one), and use
-r and -q in conjunction for a one-to-one mapping of reference to query. The -u option is handy for
keeping only those alignments which are anchored in unique sequence. The -o option sets the alignment
overlap tolerance for the -r and -g options, i.e. the amount two adjacent alignments included by -r or -g
are allowed to overlap.

Output format

Output format is the same as the input format. See the NUCmer Output format section for more details.

5.4.2. mapview

mapview is a utility script for displaying sequence alignments as provided by NUCmer or PROmer. It takes
the output from show-coords or mgaps and converts it to a FIG, PDF or PS image file. By default, it
produces FIG files which can be viewed with the common system utility xfig or converted to PDF or PS
with the fig2dev utility (neither programs are included with MUMmer). mapview is useful for mapping
multiple query contigs (e.g. from a draft sequencing project) against an annotated reference sequence.
Exons and other features can also be plotted with the NUCmer or PROmer alignments, aiding in exon
refinement and analysis. Individual MUMmer hits are plotted according to their percent identity, making
regions of high or low similarity easily distinguishable.

Command line syntax

mapview [options] <coords file> [UTR coords] [CDS coords]

The <coords file> must be produced with the show-coords program run with the -r -1 options (see
show-coords section), or the mgaps program. This coords file may represent either NUCmer or PROmer
data, and it is recommended that it be generated with the -k option (or run on a filtered delta file) to
reduce redundancy in the PROmer output, however this option does not always select the proper reading
frame. The optional UTR and CDS coordinate files which refer to the reference sequence, should be in
GFF format. These contain the coordinates of coding sequences and untranslated regions for genes on the
reference genome and will be displayed graphically if provided.

Program options

-d int Set the maximum distance, in base-pairs, between graphically linked matches
—-maxdist (default 50000)

-f string Set the output file format to 'fig', 'pdf' or 'ps' (default 'fig')

—-format

-h Print help information and exit

—--help

-m float Set the magnification at which the figure is rendered, this option will be used

—-mag when generating PDF or PS files (default 1.0)

-n int Set the number of output files used to partition the output, this is to avoid

——num generating files that are too large to display (default 10)

-p string Set the output file prefix (default PROMER graph or NUCMER graph)

——prefix

-V Verbose logging of the processed files

—--verbose

-V Display the version information and exit

--version

-x1 int Set the lower coordinate bound of the display window

-x2 int Set the upper coordinate bound of the display window

-g|ref If the input file is provided by 'mgaps', set the reference sequence ID (as it

appears in the first column of the UTR/CDS coords file)
-I Display the name of the query sequences

-Ir Display the name of the reference genes

All matches from the same contig are linked by drawing lines between each successive pair of matches, if
the matches occur too far apart, then this can get a little messy. The -d option can help clean up the plots
by limiting the distance a link can span. The -n value can be increased or decreased if the resulting FIG
files are either too big or too small respectively.

Output format

The mapview script produces FIG output files (or PDF or PS if requested) that graphically represent the
alignment described in the input coords file. An example of the resulting figures can be seen below.

-
- Jar
= mstck found by BROMER

The above MapView FIG shows a 220 kbp slice of D. melanogaster chromosome 2L and its alignment to
D. pseudoobscura. The alignment, generated by PROmer, shows all regions of conserved amino acid
sequence. The blue rectangle spanning the figure represents the reference (D. melanogaster), with

annotated genes shown above it and the PROmer alignments shown below it. Alternative splice variants of
the same gene are stacked vertically. Exons are shown as boxes, with intervening introns connecting them.
The 5' and 3' UTRs are colored pink and blue to indicate the gene's direction of translation. PROmer
matches are shown twice, once just below the reference genome, where all matches are collapsed into red
boxes, and in a larger display showing the separate matches within each contig, where the contigs are
colored differently to indicate contig boundaries. The vertical position of the matches indicates their
percent identity, ranging from 50% at the bottom of the display to 100% just below the red rectangles.
Percent identity is of the amino acid translations used by PROmer. Matches from the same query sequence
are connected by lines of the same color.

5.4.3. mummerplot

mummerplot is a script utility that takes output from mummer, nucmer, promer or show-tiling, and converts it
to a format suitable for plotting with gnuplot. The primary plot type is an alignment dotplot where a
sequence is laid out on each axis and a point is plotted at every position where the two sequences show
similarity. As an extension to this plot style, mummerplot is also able to offset multiple 1-vs-1 dotplots to
form a multiplot where multiple sequences can be laid out on each axis. This plot style is especially handy
for browsing an alignment of two contig sets. Identity plots are also possible by coloring each data point
with a color gradient representing identity, or by collapsing the y-axis data onto a single line and then
vertically offsetting the data points by their identities. In addition to producing the plot data, mummerplot
also generates a gnuplot script that will be evaluated in order to generate the graph. Since mummerplot
simply generates gnuplot input, gnuplot must also be installed and accessible from the system path.
Information about the free gnuplot software is currently available at www.gnuplot.info.

Command line syntax

mummerplot [options] <match file>

The <match file> can either be a three column match list from mummer (either 3 or 4 column format), the
delta file from nucmer or promer, the cluster file from nucmer or promer, or the default output from
show-tiling. mummerplot will automatically detect the type of input file it is given, regardless of its file
extension, or it will fail if the input file is of an unrecognized type. If the X11 terminal is selected for
output (default behavior), an X11 window will be spawned and the plot will be drawn to the screen. If a
terminal other than X11 is selected, an extra file will be output containing the plot graphic. The leftover
<prefix>.gp script contains the commands necessary for generating the plot, and may be edited afterwards
and rerun with gnuplot to change line thickness, labels, colors, etc.

Program options

-b int Highlight alignments with a breakpoint further than the given distance from the
—--breaklen nearest sequence end

——[no]color Color plot lines with a percent similarity gradient or turn off all color
(default color by match direction)

-C Generate a reference coverage plot, also known as a percent identity plot
—-—-coverage (default behavior for show-tiling input)

——depend Print dependency information and exit

-f Only display alignments which represent the "best" one-to-one mapping of

——filter reference and query subsequences (requires delta formatted input)

-h
—-help

-1
—--layout

-p string
--prefix

-r string
--IdR

—-q string
--Ido

-R string
--Rfile

-Q string
--Qfile

-s string
--size

-S
—-SNP

-t string
——terminal

-X range
--xrange

-y range
—--yrange

-V
—--version

Print help information and exit

Layout a multiplot by ordering and orienting sequences such that the largest hits
cluster near the main diagonal (requires delta formatted input)

Set the output file prefix (default 'out')

Reverse video, swap the foreground and background colors for xl11 plots (requires
x11 terminal)

Select a specific reference sequence for the x-axis

Select a specific query sequence for the y-axis

Generate a multiplot by using the order and length information contained in this
file, either a FastA file of the desired reference sequences or a tab-delimited
list of sequence IDs, lengths and orientations [+-]

Generate a multiplot by using the order and length information contained in this
file, either a FastA file of the desired query sequences or a tab-delimited list
of sequence IDs, lengths and orientations [+-]

Set the output size to small, medium or large
—-small --medium --large (default 'small')

Highlight SNP locations in the alignment

Set the output terminal to x11, postscript or png

--x11 --postscript --png

Set the x-range for the plot in the form "[min,max]"

Set the y-range for the plot in the form "[min,max]"

Display version information and exit

The --breaklen option is only useful for highlighting discrepancies between two near identical sequence
sets. The --color option looks best when plotted to a postscript terminal and looks worst when plotted to a
png terminal. If the alignment is very sparse, many of the alignments will "disappear" because they are too
small to be rendered. If this happens, try editing the gnuplot script to plot with "linespoints" instead of
"lines". The --coverage option is sometimes the only sensible way to plot one vs. many comparisons if
"many" is very large, and it is also a useful plot for finding gaps in the reference (e.g. physical gaps in a
contig set). The --filter option will throw away sometimes valuable repeat information, but is

nonetheless very helpful in cleaning up an otherwise noisy plot. The --1layout feature is only meant to be
used for multiplots where the two sequence sets are near identical, and even when this is true, the layout
algorithm isn't perfect. The -r -0 options are necessary for any multiplot, otherwise the script won't know
how long the sequences are. The sequences will be laid out in the order found in these files and every
sequence in --Rfile and --0file will be plotted even if no alignments exist. The --sNP or --breaklen
options will change the plot colors so that green is normal and red is highlighted.

Output format

The mummerplot script outputs three files, <prefix>.gp <prefix>.fplot <prefix>.rplot, when run with
standard parameters. The first of which is the gnuplot script. This script contains the commands necessary
to generate the plot, and refers to the two data files which contain the forward and reverse matches
respectively. If the --filter or --layout option are specified, an additional <prefix>.filter file will be
generated containing the filtered delta information. If the --breaklen or --snp are included, an additional
data file <prefix>.hplot will be created containing the highlight information. Finally, if a terminal other
than X11 is specified, the plot graphic will saved to the file <prefix>.ps or <prefix>.png if the terminal is
postscript of PNG respectively. Line thickness, color, and many other options can be added or removed
from the plot by hand editing the gnuplot script. Examples of the two types of plots are displayed below,
the dot plot first, followed by the coverage plot, and finnaly a couple multiplots.

T T T T T T T T

1™

1.60406 -
1.48406 - e —
1.2a+06 - -~ 4

1a+06 | -

800000 /

GO000D -~

Helicobacter_pylori_strain_Jog

400000 -]

200000 - f/,// e
D 1 1 1 1 1 1 1 1
0 200000 400000 600000 800000 1e+06 1.28<06 1.4e+06 1.60406

Halicobacter_pylori_26695

For a dot plot, the reference sequence is laid across the x-axis, while the query sequence is on the y-axis.
Wherever the two sequences agree, a colored line or dot is plotted. The forward matches are displayed in
red, while the reverse matches are displayed in green. If the two sequences were perfectly identical, a
single red line would go from the bottom left to the top right. However, two sequences rarely exhibit this
behavior, and in the above plot, multiple gaps and inversions can be identified between these two strains
of Helicobacter pylori. This plot was generated from nucmer output, however running mummerplot on a
simple match list from mummer would produce similar results, but with more "noise". In the newer versions,
mummerplot plots points at the beginning and end of each line to avoid pixel resolution issues and also uses
different plotting colors. Therefore, the output may look slightly different than displayed on these pages.

100 b

B0 -

40 J

P.yoeli contigs
1
[

20 R

ﬂ 1 1 1 1 1
0 100000 200000 300000 400000 SOO000 &00000 7OO000 800000 900000

Pfelciparum chromosome 2

When there are many query sequences mapping to a single reference sequence, it is often helpful to use a
coverage or percent identity plot. This type of plot lays out each of the alignment regions (or for
show-tiling, the full contigs) according to their percent similarity and mapping location to the reference.
For easier visualization of gaps, all of the alignments are also re-plotted at 10% similarity to normalize the
y coordinates and produce a secondary 1D plot. Note that since mummer produces nothing but exact
matches, only the normalized 1D plot will appear in the figure.

A multiplot is a plot for multiple reference and query sequences where each reference/query pair is given
its own grid box and their dotplot is drawn within the constraints of that box. Thus, every grid line
represents the end of one sequence and the beginning of the next. This allows us to draw every dotplot for
the two sequence sets at once, as displayed by the two contig sets in the above left image. With a little
shuffling of the order and orientation of the sequences, a more pleasing layout can be obtained as show in
the above right image. This is the same contig set as on the left, however the contigs have been reordered
and oriented so that the major alignments cluster around the main diagonal of the plot. This allows for
easier browsing of the plot by centralizing the important information, and also highlights contigs that have
disagreeing sequences by breaking the diagonal. Currently a greedy approach is used to perform the
layout, and while good at bringing alignments to the diagonal, it does not always produce the optimal
ordering. Therefore, a break in the diagonal does not always signal a disagreement between the two
sequence sets (see the mummerplot --breaklen option for an easy way to highlight assembly discrepancies).

A quick reference guide for interpretting the dot plot is available here.
5.4.4. show-aligns

show-aligns parses the delta encoded alignment output of NUCmer and PROmer, and displays the
pair-wise alignments from the two sequences specified on the command line. It is handy for identifying
the exact location of errors and looking for SNPs between two sequences.

Command line syntax

show-aligns [options] <delta file> <IdR> <IdQ>
The <delta file> is the delta output file of either nucmer or promer. <Idr> is the FastA header tag of the

desired reference sequence, and <1do> is the FastA header tag of the desired query sequence. All
alignments between these two sequences will be displayed. Output will be to stdout.

Program options

-h Print help information and exit
-q Sort alignments by the query start coordinate
-r Sort alignments by the reference start coordinate

-w int Set the screen width of the output (default 60)

-x int The alignment matrix type, 1 [BLOSUM 45], 2 [BLOSUM 62] or 3 [BLOSUM 80] (default 2)

The -x option applies to amino acid alignments (promer output) and will only affect the error notations,
not the alignment.

Output format

Output is to stdout and is slightly different depending on the type of alignment, i.e. nucleotide or amino
acid. Each alignment is preceded with a header containing the BEGIN keyword, the frame/direction
information and the start and end in the reference and query respectively. Each individual line of the
alignment is prefixed with the position of the first base on that line, these positions reference the forward
strand of the DNA sequence regardless of alignment type. Errors in nucleotide alignments are marked
with a '~ character below the two mismatching sequence bases. Errors in protein alignments are noted
with a whitespace in between the two mismatching acids, while similarities (positive alignment scores) are
marked with a '+' and identities are noted with a copy of the matching acid. Each alignment is followed
by a footer containing the END keyword, the frame/direction information and the start and end in the
reference and query respectively. Perhaps the best way to explain this format is by example, so snippets of
the two types of alignments are given below.

Nucleotide alignment output

/home/aphillip/data/GHP.lcon /home/aphillip/data/GHPJ9.lcon

-- Alignments between Helicobacter pylori 26695 and Helicobacter pylori strain J99

-— BEGIN alignment [+1 4262 - 4316 | +1 4469 - 4522]

4262 gatttgaacttccgtttccaccgtgaaagggtggtatccttggecacta
4469 gatttgaacccctgtaaccaccgtgaaagggtggtatce.taaccacta
4311 gatgaa

4517 gatgaa

-- END alignment [+1 4262 - 4316 | +1 4469 - 4522]
—-— BEGIN alignment [+1 5198 - 22885 | +1 5389 - 23089]
(output continues ...)

Amino acid alignment output

/home/aphillip/data/mgen.seq /home/aphillip/data/ecoliOl57.seq

-- Alignments between mgen.seq and Escherichia coli 0157:H7

—— BEGIN alignment [+1 31690 - 31995 | +3 3336375 - 3336680

31690

3336375

31837

3336522

31984

3336669

VSFSFYLVPNKRSPASPRPGIMYLLSFNFSSIAARNIST*GCIFSTLLI
+ F Y VP SPASPRPGIMY SF+ SI A ST GC Fs+ I
IIFILYFVPKILSPASPRPGIMYPCSFSP*SIDAVYSSTSGCAFSSAAT

PSGAATIAITLILIGLSSLIDLIAVNNVVPVASIGSRIITCESEMFSGI
PSGAAT TL+L+ + + PVASIGS I S M
PSGAATSTRTLMLLQPAFFSRSMVAITEPPVASIGSTISAIRSSMLETS

FL*Y
F Y
FWKY

-- END alignment [+1 31690 - 31995 | +3 3336375 - 3336680
—- BEGIN alignment [+2 50819 - 51220 | -1 3263900 - 3263499
(output continues ...)

5.4.5. show-coords

show-coords parses the delta alignment output of NUCmer and PROmer, and displays summary
information such as position, percent identity and so on, of each alignment. It is the most commonly used

tool for analyzing the delta files.

Command line syntax

show-coords [options] <delta file>

The <delta file> is the delta output file of either nucmer or promer.

Program options

-b

Brief output that only displays the non-redundant locations of aligning regions

Switch output to btab format

-C Include percent coverage columns in the output

-d Include the alignment direction/reading frame in the output (default for promer)

-g Only display alignments included in the Longest Ascending Subset, i.e. the global
alignment. Recommened to be used in conjunction with the -r or -g options. Does not
support circular sequences

-h Print help information and exit

-H Omit the output header

-I float Set minimum percent identity to display

-k *PROMER ONLY* Knockout (do not display) alignments that overlap another alignment in
a better reading frame

-1 Include sequence length columns in the output
-L int Set minimum alignment length to display
-0 Annotate maximal alignments between two sequences, i.e. overlaps between reference

and query sequences

-q Sort output lines by query
-r Sort output lines by reference
-T Switch output to tab-delimited format

The -b option alters the output table to only display the location of the aligning regions, not their identity,
direction, frame, etc. Also, for protein data, the -b option will collapse all overlapping frames, and list a
single encompassing region. -B switches the output format to "btab" (Blast tablature) which is a
tab-delimited table with a different layout than the standard show-coords format. The coverage
information added with the -c option is equal to the length of the alignment divided by the length of the
sequence. The -k option will select the "best" reading frame by choosing the alignment that is longest, or
has the highest percent identity and is within 75% of the length of the longest alignment; only alignments
that overlap each other by greater than 50% of their length will be considered for knockout. The -t
option is different than the -B option because it retain the normal ordering of output columns. The output
of the -d option for NUCmer data will appear under the [FrRM] column, just like the reading frame info
from PROmer data. The -o annotations will appear in the final column of the output. The descriptions
reference the reference sequence, e.g. [END] means the overlap is on the end of the reference sequence and
[CONTAINED] means the reference sequence is contained by the query sequence.

The -c and -1 options are useful when comparing two sets of assembly contigs, in that these options help
determine if an alignment spans an entire contig, or is just a partial hit to a different sequence. The -b
option is useful when the user wishes to identify syntenic regions between two genomes, but is not
particularly interested in the actual alignment similarity or appearance. This option also disregards match
orientation, so should not be used if this information is needed. The -g option comes in handy when
comparing sequences that share a linear alignment relationship, that is there are no rearrangements. Large
nsertions, deletions and gaps can then be identified by the break between two adjacent alignments in the

output. If there are more than one global alignment that share the same score, then one of them is picked
at random to display. This is useful when mapping repetitive reads to a finished sequence.

Output format

Output is to stdout and is slightly different depending on the type of alignment, i.e. nucleotide or amino
acid. Some of the described columns, such as percent similarity, will not appear for nucleotide
comparisons. When run without the -1 or -B options, show-coords prints a header tag for each column; the
descriptions of each tag follows. [s1] start of the alignment region in the reference sequence [E1] end of
the alignment region in the reference sequence [S2] start of the alignment region in the query sequence
[E2] end of the alignment region in the query sequence [LEN 1] length of the alignment region in the
reference sequence [LEN 2] length of the alignment region in the query sequence [$ IDY] percent identity
of the alignment [¢ sIM] percent similarity of the alignment (as determined by the BLOSUM scoring
matrix) [$ STP] percent of stop codons in the alignment [LEN R] length of the reference sequence [LEN Q]
length of the query sequence [cov R] percent alignment coverage in the reference sequence [COV Q]
percent alignment coverage in the query sequence [FRM] reading frame for the reference and query
sequence alignments respectively [TaGs] the reference and query FastA IDs respectively. All output
coordinates and lengths are relative to the forward strand of the reference DNA sequence.

When run with the -B option, output format will consist of 21 tab-delimited columns. These are as follows:
[1] query sequence ID [2] date of alignment [3] length of query sequence [4] alignment type [5]
reference file [6] reference sequence ID [7] start of alignment in the query [8] end of alignment in the
query [9] start of alignment in the reference [10] end of alignment in the reference [11] percent identity
[12] percent similarity [13] length of alignment in the query [14] O for compatibility [15] O for
compatibility [16] NULL for compatibility [17] O for compatibility [18] strand of the query [19] length
of the reference sequence [20] O for compatibility [21] and O for compatibility.

5.4.6. show-snps

show-snps is a utility program for reporting polymorphisms contained in a delta encoded alignment file
output by NUCmer or PROmer. It catalogs all of the single nucleotide polymorphisms (SNPs) and
insertions/deletions within the delta file alignments. Polymorphisms are reported one per line, in a
delimited fashion similar to show-coords. Pairing this program with the appropriate MUMmer tools can
create an easy to use SNP pipeline for the rapid identification of putative SNPs between any two sequence
sets, as demonstrated in SNP detection section.

Command line syntax

show-snps [options] <delta file>

The <delta file> is the delta output of either nucmer or promer. Output will be to stdout.

Program options

-C Do not report SNPs from alignments with an ambiguous mapping, i.e. only report SNPs
where the [R] and [Q] columns equal 0 and do not output these columns

-h Print help information and exit
-H Do not print the output header

-I Do not report indels

-1 Include sequence length information in the output

-q Sort output lines by query IDs and SNP positions

-r Sort output lines by reference IDs and SNP positions

-S Specify which alignments to report by passing 'show-coords' lines to stdin
-T Switch to tab-delimited format

-x int Include x characters of surrounding SNP context in the output (default 0)

The -c option is a little confusing, but in simple terms it avoids calling SNPs from repetitive regions.
"ambiguous mapping" refers to a position on the reference or query that is covered by more than one
alignment. This can be caused by simple repeats, or overlapping alignments caused by tandem repeats that
exist in different copy numbers. Either way, calling SNPs from these regions is questionable, and
therefore the -c option should be invoked in most instances. To generate output suitable for further
parsing, use the -H -T options. The [BUFF] output column will refer to the sequence positions requested by
the -r -qg options, so these options affect more than the order of the output. The -s option will accept all
forms of show-coords output, so output can be piped into show-snps or a simple cut/paste from one xterm
to another should get the job done. This option is helpful when the user has a specific alignment they
would like to see SNPs from. -x does nothing other than print out the characters on either side of the listed
position for both the reference and query. The '.' character is used to represent indels, while ' -
represents end-of-sequence.

Output format

Output is to stdout and is slightly different depending on which command switches are set. For instance,
by default the output is arranged in a table style, however if the -T option is active, the output will be
tab-delimited. Also, the sequence files, alignment type and column headers are output by default, however
if the -H option is active, the headers will be stripped from the output. Other options like -1 -c -x will add
or remove columns from the output. So, for description purposes, all possible column headers will be
given and it is up to the user to pair the column header with the column number. The descriptions for
each header tag follows. [P1] position of the SNP in the reference sequence. For indels, this position refers
to the 1-based position of the first character before the indel, e.g. for an indel at the very beginning of a
sequence this would report 0. For indels on the reverse strand, this position refers to the forward-strand
position of the first character before indel on the reverse-strand, e.g. for an indel at the very end of a
reverse complemented sequence this would report 1. [suB] character or gap at this position in the
reference [suB] character or gap at this position in the query [P2] position of the SNP in the query
sequence [BUFF] distance from this SNP to the nearest mismatch (end of alignment, indel, SNP, etc) in the
same alignment [DIST] distance from this SNP to the nearest sequence end [R] number of repeat
alignments which cover this reference position [0] number of repeat alignments which cover this query
position [LEN R] length of the reference sequence [LEN 0] length of the query sequence [CTX R]
surrounding reference context [cTx 0] surrounding query context [FRM] sequence direction (NUCmer) or
reading frame (PROmer) [Tacs] the reference and query FastA IDs respectively. All positions are relative
to the forward strand of the DNA input sequence, while the [BUFF] distance is relative to the sorted
sequence.

5.4.7. show-tiling

show-tiling attempts to construct a tiling path out of the query contigs as mapped to the reference
sequences. Given the delta alignment information of a few long reference sequences and many small
query contigs, show-tiling will determine the best mapped location of each query contig. Note that each

contig may only be tiled once, so repetitive regions may cause this program some difficulty. This program
is useful for aiding in the scaffolding and closure of an unfinished set of contigs, if a suitable, high
similarity reference genome is available. Or, if using PROmer, show-tiling will help in the identification
of syntenic regions and their contig's mapping to the references.

This program is not suitable for "many vs. many" assembly comparisons, however a new tool based on the

concepts of show-tiling should be available in the near future that will facilitate the mapping of assembly
contigs.

Command line syntax

show-tiling [options] <delta file>

The <delta file> is the delta output file of either nucmer or promer. Primary output will be to stdout.

Program options

-a Describe the tiling path by printing the tab-delimited alignment regions

-C Assume the reference sequences are circular, and allow tiled contigs to span the
origin

-h Print help information and exit

-g int Maximum gap between clustered alignments, where -1 will represent infinity

(nucmer default 1000, promer default -1)

-i float Minimum percent identity (nucmer default 90.0, promer default 55.0)

-1 int Minimum contig length (default 1)

-p filename Output a pseudo molecule of the query contigs to file

-R Deal with repetitive contigs by randomly placing them in one of their copy
locations (implies -V 0)

-t filename Output a TIGR assembler style contig list of EVERY mapping contig to file

-u filename Output the tab-delimited alignment regions of the unusable contigs to file

-v float Minimum contig alignment coverage (nucmer default 95.0, promer default 50.0)
-V float Minimum contig coverage difference (nucmer default 10.0, promer default 30.0)
-X Describe the tiling path by printing the XML contig linking information

The -i and -1 options filter out all contigs below these cutoffs. The -p option creates a pseudo molecule

from the query sequence, and arranges them as the map to the reference. The -v option sets the minimum
percent of the query contig that must be covered by aligning bases, while the -v option sets the difference
in percent coverage to determine one mapping is better than another. To include the most possible contigs

in the tiling, set the -v option to zero and lower the -i and -v options to reasonable values. For NUCmer
data, percent coverage is the non-redundant number of aligning bases divided by the length of the query
sequence, while for PROmer data, percent coverage is the extent of the syntenic region divided by the
length of the query sequence. The difference being, show-tiling does not penalize a PROmer mapping for
having big gaps and small alignments. The -x option output can be used as input to the TIGR scaffolder
"Bambus", for use as contig linking information. With the exception of the output generated by the -t
option, all tiling paths include the minimal number of contigs needed to generate the maximum reference
coverage. This means that there may be other, smaller contigs that map to the reference, but because they
are shadowed by larger contigs, they are not reported. The -r option is very useful for maintaining
uniform, 'random' coverage of reads when mapping to a reference.

Output format

Output is to stdout and differs depending on the command line options. Standard output has an 8 column
list per mapped contig, separated by the FastA headers of each reference sequence. These columns are as
follows: [1] start in the reference [2] end in the reference [3] gap between this contig and the next [4]
length of this contig [5] alignment coverage of this contig [6] average percent identity of this contig [7]
contig orientation [8] contig ID. Output of the -a and -u options have the same columns as show-coords
run with the -THc1 options. Output of the -x option follows standard XML format. An example of the
standard output of show-tiling follows:

>gba:6615 5227293 bases

-10807 20017 105 30825 100.00 99.99 + 253
20123 21388 42 1266 100.00 100.00 - 121
21431 93545 37 72115 100.00 100.00 + 272
93583 96184 -15 2602 100.00 100.00 + 51
96170 98575 161 2406 100.00 99.96 - 93
98737 100543 1072 1807 100.00 99.83 - 94
101616 103405 3121 1790 100.00 99.89 + 107
5215716 5216412 73 697 100.00 100.00 - 92
(output continues ...)

>gbx:17223 181677 bases

-12269 43162 -258 55432 100.00 100.00 - 9
42905 49553 -106 6649 100.00 100.00 + 7
49448 112332 -659 62885 100.00 100.00 - 21
111674 112935 -519 1262 100.00 100.00 + 22
112417 116940 -201 4524 100.00 100.00 + 23
116740 160401 -27 43662 100.00 100.00 + 10
160375 167673 1734 7299 100.00 100.00 - 159
>gbx:17224 94829 bases

-89937 5606 54601 95544 100.00 99.99 - 168
60208 61126 -56235 919 100.00 99.24 - 43

The negative start positions indicate contigs that are wrapping around the origin, since this output was
generated with the -c option.

5. Known problems

MUMmer's modular design is very beneficial, however it has created a small set of inconveniences. Some
modules like mummer have been updated in the recent 3.0 release, while others like mgaps have not. Since it
is not always possible to update all modules at once, some legacy issues appear. For example, because
mgaps was originally written to cluster the output of a matching algorithm that could only handle one
reference sequence, its input and output is constrained to handle only a single reference sequence. When
mummer was updated in the 3.0 release, it was modified to handle multiple reference sequences, but this
causes a slight incompatibility as its output can no longer be fed into mgaps when it contains multiple

reference sequences. The same type of annoyance occurs between mummer and gaps, as gaps was originally
designed to handle only one reference and only one query sequence. Such incompatibilities can be
inconvenient, but workarounds with stream editors and conversion scripts are common practice by those
familiar with MUMmer. Learning more about the output of each program can lead to a better
understanding of how the modules communicate with one another and make it possible to format the
output of one module so that it can be understood by a legacy module.

nucmer, promer and run-mummer3 all have a difficult time with tandem repeats. If the two sequences contain
a different number of copies of the same tandem repeat, these alignment routines will sometimes generate
a cluster on either side of the tandem and extend alignments past one another, failing to join them into a
single alignment region. This generates two overlapping alignments and makes it difficult to determine
what caused this erratic behavior. In addition, the %identity for this region may appear artificially low as
the alignment extension attempted to align sequence that was offset by the difference in length of the
tandem repeats, instead of identifying the single large insertion. Any difference in the tandem between the
reference and query can be calculated as the difference of the alignment overlap in each sequence. This
bug is more of a nuisance than a critical problem, so a fix is being considered but no timeline has been set
for its implementation.

The MUMmer programs do not perform validity checking on their inputs. If any part of the package
appears to malfunction, please check that the input files are within the constraints of each program (i.e.
number of sequences allowed, FastA format, memory usage, etc.).

This document will be under constant edit, so if you notice any errors please contact us.

6. Acknowledgements

The development of MUMmer is supported in part by the National Science Foundation under grants
I1S-9902923 and 1IS-9820497, and by the National Institutes of Health under grants R01-LMO06845 and
NO1-AI-15447.

MUMmer3.0 is a joint development effort by Stefan Kurtz of the University of Hamburg and Adam
Phillippy, Art Delcher and Steven Salzberg at TIGR. Stefan's contribution of the new suffix tree code was
essential to making MUMmer3.0 an open source project. Please see the ACKNOWLEDGEMENTS file in
the distribution for an updated list of contributors.

7. Contact information

Please address questions and bug reports via Email to:

mummer-help@lists.sourceforge.net

VERSION 3.17 - May 2005

SOURCEF_ RGE™
«NC

